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Abstract

An object-oriented design (OOD) approach is used to describe watershed scale hydrologic processes. Individual

objects (or processes) at multiple levels are described using the ‘inheritance’ concept, while the interactions of objects (or

processes) are described using the ‘aggregation’ concept. This design methodology is applied to create the new

watershed based hydrological model OBJTOP (OBJect oriented, TOPographic based model). In OBJTOP, the

watershed (top level object) is composed of five sub-objects: precipitation, evapotranspiration, vegetation, soil and

channel. These objects are further subdivided, such as soil into four sub-objects: surface, and root, unsaturated and

saturated zones. Each sub-object, designed using the inheritance concept, has its own distinct attributes and behaviors

and works independently to represent different individual processes such as soil processes, channel processes, etc. The

sub-objects, designed using the aggregation principle, are interconnected and interact with each other within the higher

level objects and thus constitute the hydrological process simulation. OBJTOP presents a description of hydrologic

processes in a direct and concise manner. OBJTOP’s model structure should benefit model coding, maintenance, and

future modification efforts, and therefore the program design strategies should be of interest to other program

designers.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Watershed based hydrological models are important

tools in operational hydrology and water resources

planning and management. A watershed-scale hydro-

logic model is a simplified description of the hydro-

logical system of a watershed. Different understandings

of hydrological processes, varieties of watershed char-

acteristics, and concerns have led to the creation of a
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wide variety of hydrologic models. These models have

proven useful in operational hydrology and water

resources management environments, e.g., HSPF (Bick-

nell et al., 1997), SWMM (Huber et al., 1988) as well as

a more science-based, heuristic approach, e.g., TOP-

MODEL (Beven and Kirkby, 1979).

Procedure-oriented languages, such as FORTRAN

and C, have been widely used in hydrological modeling.

Popular watershed hydrological models such as HSPF,

SWMM and TOPMODEL are designed and coded in

FORTRAN. However, the development of the object-

oriented programming (OOP) language C++ and

object oriented design (OOD) techniques create the
d.
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opportunity to explore new means to describe complex

hydrologic phenomena. Some important differences

between procedural and object oriented approaches are

summarized below.

In procedural programming languages, programming

tends to be action oriented, with the unit of program-

ming being the function. Procedural language program-

mers concentrate on writing functions. Groups of

actions that perform some common task are formed

into functions, and functions are grouped to form

programs.

OOP programmers concentrate on creating user-

defined types called objects or classes, e.g., class soil

might be defined in a hydrologic model. Each class

contains data as well as the set of functions that

manipulate the data. For example, a soil class might

contain soil transmissivity T as data and a function to

simulate soil moisture using T. The data components of

a class are called data members or attributes. The

function components of a class are called member

functions or behaviors. OOP advocates claim that OOP

techniques provide a natural and intuitive view of the

programming process, by modeling the attributes and

behaviors of real-world objects (Deitel and Deitel, 2003).

Of the object-oriented programming languages,

C++ is probably the most widely used. Stroustrup

(1997), the C++ creator, explained the difference

between C and C++, which help describe some of the

benefits of C++.

A programming language serves two related pur-

poses: it provides a vehicle for the programmer to

specify actions to be executed, and it provides a set of

concepts for the programmer to use when thinking

about what can be done. The first purpose ideally

requires a language that is ‘close to the machine’ so

that all important aspects of a machine are handled

simply and efficiently in a way that is reasonably

obvious to the programmer. The C language was

primarily designed with this in mind. The second

purpose ideally requires a language ‘that is close to

the problem to be solved’ so that the concepts of a

solution can be expressed directly and concisely. The

facilities added to C to create C++ were primarily

designed with this in mind. The C++ class concept

has, in fact, proven itself to be a powerful conceptual

tool.

Lafore (1999) cites some advantages of C++ over

procedural languages, advantages that can improve the

design, structure and reusability of code.
1.
 Encapsulation: Class builds ‘firewalls’ around objects,

forcing all access (data) through member functions

(object functions), preventing access to private

implementation. This simplifies writing, debugging,
and program maintenance. Objects intercept errors

before they propagate outward.
2.
 Inheritance: Each subclass shares common character-

istics with the class from which it is derived.

Inheritance enables the derivation of a new class

using all the existing properties of its base classes, and

derived classes can add new properties of their own.

Inheritance shortens an object-oriented program and

clarifies the relationship among program elements.
3.
 Reusability: A new class inherits the capabilities of the

class from which it is derived, but new features can be

added. This increases software flexibility because

reusability makes it simpler and easier to modify

and extend the functionality and capabilities of the

existing code.
4.
 Polymorphism: This technique allows functions or

operators to act in different ways, depending on what

they are operating on. Polymorphism simplifies code

design and makes programming more efficient in

some situations.
The OOP language C++ makes it possible to create

a flexible and reusable model structure. The full

advantages of C++ become evident when object-

oriented design (OOD) principles, such as the open-

closed and dependency inversion principles, are incor-

porated into the model design. Examples of these

programming techniques will be provided subsequently.

There are relatively few applications of OOD-OOP

principles in hydrologic simulation. Band et al. (2000)

described a spatial object-oriented framework to model

watershed systems to include hydrological and ecosys-

tem fluxes. Chen and Beschta (1999) developed a

3-dimensional distributed hydrological model-OWLS

(the Object Watershed Link Simulation model) for

dynamic hydrologic simulation and applied it to the

Bear Brook watershed in Maine. Garrote and Becchi

(1997) used object oriented techniques with distributed

hydrologic models for real-time flood forecasting. Boyer

et al. (1996) presented an object-oriented method to

simulate a rainfall-discharge relationship with a lumped

model. McKim et al. (1993) used object oriented

techniques to combine remotely sensed data with

hydrologic data to create a dynamic forecast model.

Whittaker et al. (1991) introduced an object-oriented

approach to simulate hydrologic processes, specifically

infiltration excess overland flow.

The above applications used object oriented program-

ming and achieved reasonable results for their hydro-

logic simulations. However, there is little discussion of

OOD principles and how to systematically implement

them in program design. In this paper, we discuss model

structure and design. Some important OOD principles

are discussed. These OOD principles are applied in a

later section illustrating OBJTOP design.
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2. OOP and OOD principles employed in OBJTOP

2.1. General principles

The class/object and the ‘inheritance’ concepts are

used to study individual parts (processes) of a system,

while the ‘aggregation’ concept is used for simulation of

interactions of the individual parts (processes). Objects

in a real system can be related in two ways, i.e., in either

a ‘is a’ or ‘part of’ relationship. For example, rainfall is a

kind of precipitation; soil is part of a watershed, etc.

Inheritance is used to describe the ‘is a’ relationship

between objects. For example, class ‘rainfall’, derived

from a more general class ‘precipitation’ using inheri-

tance, shares all the attributes and behaviors from its

base class ‘precipitation’, and in addition can have its

own attributes and associated behaviors that make it

distinct from its base class. Class ‘snow’ can be designed

the same way. Several sub-objects (precipitation, evapo-

transpiration, soil and channel) can be aggregated to

form a more general object (watershed) thus creating a

‘part of’ relationship. Aggregation provides a frame-

work to describe the interactions of the sub-objects

rainfall, evapotranspiration, soil and channel, in the

object watershed.

Two important OOD principles were used in the

design of OBJTOP:
1.
 Open-closed principle: OBJTOP is designed in

accordance with this principle (open for extension,

closed for modification) in that certain features of the

code will not change. When change is required, new

code will be added rather than changing old code that

already works (Martin, 2003).
2.
 The Dependency Inversion Principle (DIP). Martin

(2003) describes this principle as follows:

� High-level classes should not depend upon low-

level classes. Both should depend on abstractions.

� Abstractions should not depend upon details.

Details should depend on abstractions.

� If a high level abstraction depends on low-level

implementation details, the dependency is inverted

from what it should be.
The highest-level classes provide the policy decisions

of an application, and are designed not to change with

the details of an implementation. Lower level classes

incorporate the details of the (current) implementation.

OOD provides a mechanism to perform this dependency

inversion by using a pure abstract class to design high-

level programs. The high level class depends on

abstractions and is independent of the details that it

controls, and the lower level, detailed programs (or

modules) depend on the same abstractions. Thus, the

dependency structure of a well designed object oriented
program is ‘inverted’ with respect to the dependency

structure that normally results from traditional proce-

dural methods, and by inverting the dependencies, a

structure can be created which is flexible and durable

(Martin, 1996).

The above OOD principles were applied to OBJTOP

design, as described in the following section.
3. Hydrologic principles incorporated in OBJTOP

3.1. TOPMODEL concepts

OBJTOP (OBJect-oriented, TOPographic ) is based

on TOPMODEL concepts (Beven and Kirkby, 1979).

TOPMODEL, a semi-distributed watershed scale hy-

drologic model, is based on the premise that topography

exerts a dominant control on flow routing through

upland catchments. It has been widely accepted as it

provides a relatively simple framework for the use of

DTM (digital terrain model) data and computationally

efficient prediction of distributed hydrological responses

(Saulnier et al., 1997). The simplicity of the model comes

from the use of the topographic index (TI, ln(A/tanb),
where A is contributing area and tanb represents local
slope) of hydrological similarity which is derived from

topographic data. Beven and Kirkby’s original version

of TOPMODEL is appropriate in small, humid,

homogeneous and shallow soil catchments in which

saturation excess overland flow dominates. TOPMO-

DEL also assumes the transmissivity of the soil

decreases with soil depth as described by an exponential

function, a representation that may not be suitable for

all soils (e.g., Ambroise et al., 1996b, a). Several of the

TOPMODEL assumptions described above were re-

laxed in OBJTOP.

The following assumptions and features were incor-

porated into OBJTOP using C++ class templates

technique.
(1)
 Both saturation and infiltration excess overland flow

mechanisms are included, which allows the model to

be applied to watersheds with different runoff

generation mechanisms.
(2)
 Hydraulic conductivity can decay with soil depth in

either an exponential or a generalized power

function form, which allows the model to be suitable

for different soil types (Duan and Miller, 1997;

Iorgulescu and Musy, 1997).
(3)
 Both soil topographic index (STI) and topographic

index (TI) mechanisms are incorporated, which is a

step towards modeling spatially complex watersheds

(Ambroise et al., 1996b).
(4)
 Simulations can be performed with or without

channel routing.
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OBJTOP can thus provide sixteen schemes for

hydrological processes simulation appropriate to

various watershed conditions and soil types. This

allows flexibility for both model simulation and

calibration.
3.2. Features of Class Watershed

In OBJTOP, the class Watershed is composed of five

subclasses: Precipitation, Vegetation, Evapotranspira-

tion, Soil, and Channel (Fig. 1). The classes Soil,

Channel, Evapotranspiration, Vegetation and Precipita-

tion are thus considered parts of the highest-level class

Watershed. As noted earlier, OBJTOP is based on

TOPMODEL concepts, in that topography exerts the

dominant control on flow. In OBJTOP, topography is

described as part of the soil structure and channel

geometry so that it can exert influence on all the flow

calculations.

Class Precipitation is divided into classes Rainfall and

Snowmelt. Class Soil is composed of four subclasses:

Surface (mainly for the infiltration process), Root zone,

Unsaturated zone and Saturated zone (Fig. 1). The

interactions among the above classes are shown in Fig. 2.

Class Rainfall and Snowmelt are components of class

Precipitation (Fig. 1) and illustrate an aggregation

relationship. The two classes share common character-

istics of precipitation and thus represents a general-

ization relationship; class Precipitation is generalized

from classes Rainfall and Snowmelt.

A similar relationship exists in the Soil class. Classes

Surface, Root zone, Unsaturated zone, and Saturated

zone can be thought parts of Soil. At the same time, the

four classes share some common characteristics of soil,

so the class Soil can be thought a generalization of

the four classes. The two relationships among class Soil

and its the lower level Classes Surface, Root zone,
Water

Precipitation Vegetation Evapotran

Rainfall Snowmelt

Surface

Fig. 1. UML class diagram for Watershed. The diamonds indicate a

‘part of’ the higher level class Precipitation.
Unsaturated zone, and Saturated zone are reflected in

the model design to simulate hydrologic processes.

Soil and its derived classes describe and simulate soil

processes. The ‘is a’ and ‘part of’ relationships coexist in

class Soil and its subclasses. The ‘is a’ relationship is

used to simulate individual sub soil processes while ‘part

of’ relationship is used to simulate the interactions of

these processes. The inheritance concept is used to

simulate ‘is a’ relationships and to study individual soil

processes at multiple levels. The design of ‘is a’

relationship in Soil and its subclasses is a fundamental

feature of OBJTOP design.
3.2.1. Class soil and sub classes

Fig. 3 illustrates the interdependencies and relation-

ships of class Soil and its derived subclasses. Class Soil is

divided into two sub classes: upperSoil and lowerSoil

(Fig. 3). Class upperSoil is further divided into surface

and rootzone classes and lowerSoil is divided into

unsatzone and satzone classes. These classes are abstract

classes that provide protocol. Classes surfaceI, rroot-

zone, runsatzone and rsatzone are derived from classes

surface, rootzone, unsatzone and satzone, separately.

The meanings of the above classes are suggested by their

names. For example, upperSoil stands for upper soil,

etc. Class surfaceI deals with the surface infiltration

process. These fourth layer soil classes are also abstract

classes but include function bodies, which are shared by

their related fifth layer classes, and perform different

tasks for specific soil processes. The fifth and lowest

classes surfaceIE, surfaceIN, rrootzoneE, rrootzoneN,

runsatzoneE, runsatzoneN, rsatzoneE and rsatzoneN

were designed to simulate soil processes in two different

ways in OBJTOP. ‘E’ and ‘N’ are used to represent two

methods to describe change of soil transmissivity with

soil depth, exponential and generalized power function

decay, respectively.
shed

spiration Soil Channel

Topography

Root
Zone

Unsaturated
Zone

Saturated
Zone

‘part of’ relationship, i.e., classes Rainfall and Snowmelt are a
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Channel
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Fig. 2. UML interaction diagram illustrating interactions among classes. P indicates precipitation (snow melt or rainfall); ET is

evapotranspiration from the root zone and Q is the total runoff from the watershed. I is throughfall (precipitation after vegetation

interception), R is recharge rate to the soil, IOQ is infiltration excess overland flow, RZQ is root zone flow, SOQ is saturation excess

overland flow, UZQ is flow from unsaturated zone to saturated zone, and BQ is base flow. The symbols have meanings as follows: —

A—means inheritance (or generalization ) and represents ‘‘is a’’ relationship, i.e., rainfall or snow melt is a kind of precipitation. A-
B indicates association, i.e., class A asks class B to do something, B A indicates a flow of in formation from B to A. The

combination of the two arrows indicates that class B provides data to class A under the request of A. The ‘Surface’ class simulates the

infiltration process for infiltration excess overland flow. For saturation excess overland flow, the recharge rate R goes directly to the

root zone after interception of precipitation by vegetation.

Soil

lowerSoilupperSoil

surface rootzone unsatzone satzone

surfaceI rrootzone runsatzone rsatzone

surfaceIE surfaceIN runsatzoneE runsatzoneN rsatzoneE rsatzoneN

Fig. 3. UML class diagram for soil showing inheritance of soil classes. The Soil class is the highest-level class and provides a protocol

upon which all its derived classes must depend. The triangle represents an ‘is a’ relationship.
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The lower level soil classes are derived from higher

level soil classes and share common characteristics with

the class from which it is derived. In addition, the

derived classes have new distinct properties of their own.

The lower level detailed class depends on higher-level

abstract class and thus illustrates the Dependency

Inversion Principle.

If a new mechanism is desired to allow for a new

simulation scheme, a new class can be derived from the

base class, adding new member data and functions as

necessary. For example, if a new mechanism X for soil

surface transmissivity decay is desired, a new set of fifth

layer classes surface IX, runsatzoneX, rsatzoneX can be

derived from their related fourth layer base classes while

utilizing the original useful attributes and functions.

This illustrates the Open for Extension-Closed for
Modification principle, the application of which makes

OBJTOP flexible and easy to maintain.
3.2.2. Interactions of Soil Class and Subclasses

Class Soil is composed of four subclasses: Surface,

Root zone, Unsaturated zone and Saturated zone

(Fig. 1). During program development, the detailed

lowest level classes in Fig. 3 were successfully designed

and tested for their ability to simulate an individual soil

process. They were then incorporated into a new soil

class (comSoil) to simulate the interactions of these

processes (Fig. 4). Part of the comSoil class declaration

is shown in Fig. 5.

Classes comsoilS and comSoilIS share all the member

data and member functions of class comsoil (Fig. 6).
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Fig. 5. There are four member data in class comSoil: objects _infil, _rtz, _unsatz and _satz. These objects together with four related

member functions were created to simulate infiltration, root zone, unsaturated zone and saturated zone processes. In this example, (y)

means parameters necessary for function operation.

comSoil

surfaceI rrootzone runsatzone rsatzone

surfaceIE surfaceIN runsatzoneE runsatzoneN rsatzoneE rsatzoneN

Fig. 4. UML class diagram for comSoil showing aggregation of soil classes . The diamonds indicate a ‘part of’ relationship. Classes

surfaceIE, surfaceIN, runsatzoneE, runsatzoneN, rsatzoneE and rsatzoneN were created to simulate surface infiltration, as well as

unsaturated and saturated zone processes in which soil transmissivity changes with soil depth either exponentially or as a power

function. Class rrootzone is responsible for simulating root zone process.

J. Wang et al. / Computers & Geosciences 31 (2005) 425–435430
They do not have their own member data and member

functions. The only difference between comSoilS and

comSoilIS is the content of the function describing soil

processes since there is no simulation of the infiltration

process (surfaceIE, surfaceIN) in comSoilS.
Template class techniques were used in the

design of classes comSoil, comSoilS and comSoilIS in

order to give user choices for mechanisms of

overland flow generation and soil surface transmissivity

decay.
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comSoil

comSoilS comSoilIS

Fig. 6. UML class diagram for comSoil showing inheritance.

Two sub classes, comsoilS and comSoilIS are derived from class

comSoil for two types of overland flow simulation: saturation

excess (comsoilS) and infiltration excess plus saturation excess

(comsoilIS) overland flow.
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The pure virtual function (which makes class comSoil

class an abstract class) provides a protocol for soil

process simulation, which is then overridden in derived

classes comsoilS and comsoilIS for real, but different

soil processes simulation. The soil processes simulated in

class comsoilS includes root zone, unsaturated zone and

saturated zone processes, while class comsoilIS includes

surface infiltration, in addition to the processes in the

soil process of comsoilS.

A template class is used to distinguish different

mechanisms as follows. In the class comSoil declaration:

oclass surInfil, class Unsat, class Sat4, where surInfil,
Unsat and Unsat are generic variables created to

represent different generic classes. Their real names are

known only after an object is instantiated. An object can

be instantiated as

comSoilIS hsurfaceIE; runsatzoneE; rsatzoneEi soilIS ð. . .Þ;

soilIS:soilProcess ð. . .Þ;

A comSoilIS object soilIS is created to perform soil

processes using the infiltration and saturation excess

overland flow mechanisms with exponential soil trans-

missivity decay.

When an object is instantiated as

comSoilS hsurfaceIN; runsatzoneN; rsatzoneNi

soilS ð. . .Þ soilIS:soilProcess ð. . .Þ;

a comsoilS object soilS is created to perform soil

processes using the saturation excess overland flow

mechanism and with a power function profile for soil

transmissivity decay, while the infiltration process is

neglected.

Channel related classes are designed the same way as

soil classes to calculate total runoff. Template classes are

used to design channel classes to simulate runoff with or

without channel routing.

The member function associated with each object is

called by using ‘object.function (y)’.
3.2.3. Watershed class design and implementation

The final step in the design of class Watershed used

template class techniques. The concepts and relation-

ships described in Figs. 1 and 2 are reflected in the

Watershed class design. Fig. 7 shows part of the class

Watershed declaration.

Class Watershed contains seven member data items,

including five objects: a rainfall object (_rain), a

vegetation interception object (_intecpt), an evapotran-

spiration object (_ET), a soil object (_soil), a channel

object (_channel), and two simulation parameters: total

simulation time steps (Ntsteps) and simulation time

interval (DT). The object _rain and _ET provide time

series rainfall and potential ET data to the watershed.

Object _ intecpr provides throughfall; member functions

soilProcess (y) and channelProcess(y) are used to call

object _soil’s and _channel’s related member functions

to simulate real soil and channel processes.

Following is the definition of function ‘hydroProcess( )’:

template /class S, class CS
void watershed/S,CS::hydroProcess()
{

for (int i ¼ 0; ioNtsteps; i++)
{

interceptProcess(_rain[i]);

soilProcess(i,_intecpt.getThoughQ(),_ET[i]);

channelProcess(i,_soil.getBaseQ(),_soil.getSur-

faceQ(),Ntsteps);

}

}

The function hydroProcess ( ) is used to simulate

hydrological process in a watershed for a given time

period according to the class relationships shown in

Fig. 2. The interception process (interceptProcess(y)),

soil process (soilProcess(y)) and channel process

(channelProcess(y)) are simulated consecutively in

hydroProcess ( ). The time series precipitation data is

provided by rain object _rain as input to interceptPro-

cess(y) for interception process simulation. The output

(throughfall) from interceptProcess(y) and time series

potential evapotranspiration provided by object _ET are

input to soilProcess(y) for soil process simulation. The

outputs (base flow and surface flow) from soilPro-

cess(y) are input into channelProcess(y) to calculate

total runoff with the option of including the effects of

channel routing or not. The final Watershed class

interface is thus concise and conceptually clear.

The /class S, class CS (see Fig. 7) statement is the

same as /class surInfil, class Unsat, class SatS in the

declaration of template class ComSoil. S and C are

generic class variables representing different soil and
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Fig. 7. Watershed class declaration, where ‘ private ‘ data and member functions mean they are private to class Watershed and can

only be accessed by the class member functions; The three private member functions are used by the public member function

hydroProcess() to simulate hydrological processes.
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channel classes. The real class names are known after an

object is instantiated. Following is an example to

implement class Watershed.

Watershed /comSoilIS /surfaceIE, runsatzoneE,
rsatzoneES, comChannelRS catchmentA(y);

catchmentA.hydroProcess();

In this example, comSoilIS /surfaceIE, runsatzoneE,
rsatzoneES is the generic class variable S (for soil), and

comChannelR is the generic class variable C (for

channel). The meaning of soil class comSoilIS

/surfaceIE, runsatzoneE, rsatzoneES was explained in

an earlier discussion, comChannelR represents a chan-

nel class that deals with channel routing, and ‘(y)’

represents all parameters necessary for the hydrologic

simulation.
When the statement: catchmentA.hydroProcess() is

executed, a consecutive hydrological process in catch-

mentA is simulated with parameters provided through

the class watershed constructor as well as time series

rainfall and potential ET data provided by objects _rain

and _ET. The simulation utilizes infiltration/saturation

excess overland flow mechanisms and implements an

exponential decay profile and with channel routing for

the final output of a time series of flow values.
4. OBJTOP testing using TOPMODEL web page data

TOPMODEL web page data (http://www.es.lancs.

ac.uk/hfdg/hfdg.html) were used in OBJTOP to repro-

duce the simulation result of a TOPMODEL application

in the Slapton Wood catchment, a small test site in the

http://www.es.lancs.ac.uk/hfdg/hfdg.html
http://www.es.lancs.ac.uk/hfdg/hfdg.html
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United Kingdom. There is, unfortunately, limited

descriptive data about the site on the web page. The

time series runoff simulation result of OBJTOP is

exactly the same as that of TOPMODEL, which proves

the correctness of the internal structure of OBJTOP

designed with OOD principles and the OOP language

C++. OBJTOP was then applied to the Slapton Wood

catchment using a different simulation scheme and

different set of parameters than those listed on the

TOPMODEL web page. Fig. 8 is the topographic index

TI (ln(A/tan b)) spatial pattern showing possible flow
paths in the catchment. Fig. 9 is the simulated

precipitation—runoff time series using OBJTOP with

options for saturation excesses overland flow and

channel routing selected.

The parameters used in the simulation of the Slapton

Woods catchment are presented in Table 1.

A mean squared model error, and three objective

functions CRF1, CRF2, CRF3 are used for model

calibration to evaluate model performance.

CRF1 ¼ 1�
Xn

i¼1

ðQobs;i � Qcal;iÞ
2=
Xn

i¼1

ðQobs;i � Q̄obsÞ
2

 !

tends to emphasize calibration with respect to the higher

flows (Nash and Sutcliffe, 1970).

CRF2 ¼ 1�
Xn

i¼1

jQobs;i � Qcal;ij=
Xn

i¼1

jQobs;i � Q̄obsj

 !
Fig. 8. Topographic Index Spatial Pattern (TOPMODEL Web

Page data-Slapton Wood, UK). The topographic index (ln (A/

tan b) incorporates contributing area A and local slope (tan b)
to identify areas of similar hydrologic behavior.
is potentially useful in a forecasting context. It puts

more emphasis on simulations at every time step (Ye et

al., 1997).

CRF3 ¼
1�

Pn
i¼1ð

ffiffiffiffi
Q

p
obs;i �

ffiffiffiffi
Q

p
cal;iÞ

2Pn
i¼1ð

ffiffiffiffi
Q

p
obs;i �

ffiffiffiffi
Q

p
obsÞ

2

is used for a more all purpose calibration (Perrin et al.,

2001).

The results of the three objective functions:

CRF1 ¼ 0.91, CRF2 ¼ 0.72, CRF1 ¼ 0.93. The CRF1

for original TOPMODEL simulation in Slapton Wood

using TOPMODEL web page data is 0.81.

OBJTOP was next applied to two small (
60 ha)

watersheds, Ward Pound Ridge (WPR), a second

growth forest, and B28, an unsewered, urbanizing

watershed, within the New York City East-of-Hudson

drinking water supply watershed. The WPR simulation

used a power function to describe hydraulic conductivity

decay with soil depth, as opposed to the exponential

decay used in most other TOPMODEL applications.

The WPR rainfall-runoff simulation used both infiltra-

tion and saturation excess overland flow mechanisms,

and achieved a CRF1 value of 0.92. OBJTOP was than

updated by adding new components to simulate urban

impervious areas and the hydrologic effects of septic

systems as found in the B28 watershed. As discussed

previously, the OOD-OOP features of OBJTOP make it

relatively easy to add new model components to meet

new requirements. These results are in preparation.
5. Discussion and conclusions

This paper presents an object-oriented approach using

OOD techniques and the OOP language C++ to the

description and simulation of watershed based hydro-

logic processes. OOD and OOP represent a way of

organizing programs. The emphasis is on the way

programs are designed, not the coding details. In

particular, programs are organized around classes or

objects, which contain both data and functions that act

on that data. In OBJTOP, the ‘inheritance’ concept is

used to simulate the ‘is a’ relationship and to study

individual parts of a system at multiple levels. The

‘aggregation’ concept is used to simulate the ‘part of’

relationship and interactions of different parts. This

provides a powerful methodology and conceptual tool

to describe hydrological processes.

The OOP language—C++ has advantages over

procedural languages in describing complicated systems.

The OOD principles, such as open-closed and depen-

dency-inversion principles, can help build a more

flexible, durable, and mobile structure to meet possible

future model modifications. However, the complexity of

C++ (more complex than FORTRAN) and the
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Fig. 9. Precipitation-funoff simulation, time interval: 1 h. Black line: simulated discharge, red line: observed discharge.

Table 1

OBJTOP parameters used to simulate rainfall-runoff in the Slapton Woods, UK watershed

Parameter Name Parameter value Comment

m 0.025 m is a scaling parameter

T0 (m
2/h) 86.41 T0 is saturated surface soil transmissivity,

Td (h) 198 Td is the unsaturated zone time delay

MRZD (m) 0.005 MRZD is the maximum root zone storage deficit

Q0 (m/h) 3.28E-5 Q0 is initial discharge

RZD0 (m) 0.002 RZD0 is initial root zone storage deficit

MCRV (m/h) 3600 MCRV is main channel routing velocity

ICRV (m/h) 3600 MCRV is the internal channel routing velocity

Data obtained from the TOPMODEL web page (http://www.es.lancs.ac.uk/hfdg/hfdg.html).
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difficulties in utilizing OOD and its principles in

designing complicated hydrological system may have

intimidated hydrologic modelers from applying C++

to the study of watershed processes.

C++ class templates make it possible to write one

generic class or function to handle many different data

types. C++ class templates were used in OBJTOP to

simulate different soil responses to rainfall runoff

generation and with or without channel routing, etc.

under generic soil, channel and watershed classes.

OBJTOP thus provides an efficient framework to

incorporate different assumptions and mechanisms that

are suitable to different soil types and land use types for

hydrological process simulations.

It is true that end users may not be able to tell the

difference between models designed with procedure and

OOP languages. Model simulation accuracy and effi-

ciency depends on the simulation theory and computa-

tional algorithms, and less so on the programming

language used for model design and coding. But for a

model designer, the picture will be different. Almost all

software changes during its lifetime. More time is spent
on maintaining, upgrading, and debugging existing code

than is spent on creating new work (Oualline, 2003). The

biggest advantage claimed for object-oriented technol-

ogy is reusability and maintainability.

OBJTOP is designed to make the model, to the extent

possible, open for extension and closed for modification.

Thus, when simulation requirements change in the

future, OBJTOP can be extended mostly by adding

new code, not by changing old code that already works.

Application of this design technique should yield the

greatest benefit claimed for object oriented technology;

i.e., reusability and maintainability which are important

in designing large, complex watershed models.

The object-oriented design approach will become

more popular in the future. Even for the traditional

procedural language FORTRAN, the object-oriented

methods were gradually introduced starting from FOR-

TRAN 90 and 95. However, the inheritance principle

will not be fully supported until FORTRAN 200X

(Akin, 2003).

OBJTOP tries to apply systematically OOD principles

and OOP language C++ in the design and simulation

http://www.es.lancs.ac.uk/hfdg/hfdg.html
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of watershed scale hydrologic processes. The design

philosophy, methodology, and principles described in

OBJTOP could be of some help in bridging C++ and

hydrologic modeling and for FORTRAN programmers

who are interested in using OOP methodologies in new

versions of FORTRAN.
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