
Watershed hydrograph model based on surface flow diffusion

Yang Yang1 and Theodore A. Endreny1

Received 27 March 2012; revised 16 November 2012; accepted 29 November 2012; published 29 January 2013.

[1] Based on the diffusion equation and Darcy’s law, Criss and Winston (2008b) developed
the one-parameter analytical subsurface flow diffusion hydrograph model to represent the
theory of rapid displacement of ‘‘old’’ aquifer water and shallow pore water following
rainfall events. We developed a two-parameter analytical surface flow diffusion hydrograph
model for urban or other basins that generate surface runoff similar to flash floods following
a sharp pulse of rainfall at the watershed inlet. The model uses two time parameters that are
based on watershed scale, flow diffusivity, and flow celerity to control the shape of the
hydrograph and time to discharge peak. The two-parameter analytical surface flow diffusion
model was mathematically and experimentally compared with the one-parameter analytical
subsurface diffusion hydrograph model proposed by Criss and Winston (2008b).
We demonstrated that the one-parameter model represented one extreme case of the
two-parameter model when the advection of subsurface flow was zero and that the
two-parameter model was applicable for both surface and subsurface flow hydrograph
simulations. The two-parameter model was tested on several watersheds and was shown to
have a high efficiency in simulating hydrograph timing and peak discharge as well as in
matching rising and falling limb inflection points. Fitting the two-parameter surface flow
diffusion hydrograph model to a watershed runoff event helps to quantify the role of
advective and diffusive transport on discharge and how it changes with changing storm and
land cover characteristics.
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1. Introduction

[2] The hydrograph for a rainfall event is generally com-
posed of a mixture of subsurface flow and surface flow. By
understanding the watershed controls on runoff, hydrologists
can better separate subsurface and surface flows in hydro-
graphs and predict runoff travel times, pollutant loads, and
flood risk [Rinaldo et al., 2011; Smith and Ward, 1998]. The
need for hydrograph prediction is particularly critical for
urban flash floods given their destruction of human life and
property [Younis et al., 2008] and their increasing frequency
with increasing urbanization [Hapuarachchi et al., 2011].
The intense convective rainfall-triggering flash floods [Baeck
and Smith, 1998] is now forecasted with increasing accuracy
extending out to 6 h [Hapuarachchi et al., 2011]; however,
model flood predictions remain inadequate [Ntelekos et al.,
2006]. The variety of methods developed for flood predic-
tion demonstrates the associated importance and challenge
of this task. Flood prediction methods include distributed

rainfall runoff models with extensive or parsimonious
parameters [Beven and Binley, 1992; Brocca et al., 2011],
artificial neural network models [Hsu et al., 1995], unit or
geomorphological instantaneous unit hydrograph models
[Javier et al., 2007], threshold runoff estimation mapping
models [Carpenter et al., 1999], and stochastic and Bayes-
ian methods for the above models [Georgakakos, 1986;
Krzysztofowicz, 1999; Martina et al., 2005; Ntelekos et al.,
2006]. Flood model accuracy is most sensitive to errors in
rainfall intensity and distribution [Javier et al., 2007;
Ogden et al., 2000]; however, each modeling approach is
also constrained by parameter estimation of basin infra-
structure, which is constrained by observational networks
[Javier et al., 2007; Ogden et al., 2011; Younis et al.,
2008]. Parsimonious models provide an appealing approach
to improve hydrograph prediction if they can integrate basin
infrastructure and geomorphic complexity into a few repre-
sentative parameters and handle short forecast lead times.

[3] Development of a parsimonious hydrograph model
capable of generating accurate flood forecasts is motivated
by the recent success of a subsurface flow diffusion method
in predicting another complex runoff phenomenon. For
subsurface flow, hydrologists have theorized rainfall trig-
gers a pressure wave displacement of preexisting ‘‘old’’ sat-
urated and unsaturated pore water [McDonnell, 1990]. Criss
and Winston [2003, 2008a, 2008b] attempted to simulate
the rapid displacement of old water by developing a one-
parameter subsurface flow diffusion hydrograph model of
the rainfall triggered pressure wave. Their one-parameter
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subsurface flow diffusion model had a single time parameter,
which reflects the basin-scale and soil characteristics and fits
the predicted hydrograph to the natural hydrograph proper-
ties of time to peak, total flow volume, inflection points, and
recession rate [Criss and Winston, 2008b]. Criss and
Winston [2008b] applied the one-parameter subsurface flow
diffusion model on several small humid watersheds and
demonstrated that their model was simpler and performed
better than common alternatives, such as the unit hydrograph
and linear reservoir exponential model. However, the theo-
retical basis of the model is the subsurface flow diffusion
equation and Darcy’s law, which limits the application of
the model to hydrographs generated by subsurface flow.
Model test results showed that the one-parameter subsurface
flow diffusion model worked better on rural watersheds than
on urbanized watersheds where surface flow may be signifi-
cant [Criss and Winston, 2008a].

[4] Surface flow by saturation or infiltration excess can
significantly regulate the hydrograph in basins of particular
morphologies and surficial materials, such as urban and
other impervious watersheds, or under particular rainfall
conditions, such as high-intensity rains or antecedent mois-
ture conditions [Easton et al., 2007; Winchell et al., 1998].
Simulation of these surface runoff phenomena can follow
the same theoretical approach used by the one-parameter
subsurface flow diffusion model. In this research, we estab-
lished an analytical two-parameter surface flow diffusion
hydrograph model based on the analytical solution to the
surface flow advection-diffusion equation [Yen and Tsai,
2001]. The analytical two-parameter surface flow diffusion
hydrograph model was developed for a pulse input of effec-
tive rainfall at the upstream watershed boundary, similar to
the boundary condition used by Criss and Winston [2003,
2008a, 2008b] in their subsurface flow diffusion hydro-
graph model. We provided a parameter sensitivity analysis
of the model, compared the two-parameter surface flow dif-
fusion hydrograph model with the one-parameter subsur-
face flow diffusion model, and proposed the possible
extension of the one-parameter model to the two-parameter
model. We then demonstrated applications of the two-pa-
rameter diffusion model to simulate hydrographs for urban
watersheds after intense rainfall.

2. Two-Parameter Analytical Surface Flow
Diffusion Hydrograph Model

2.1. Model Development

[5] In hydrology and hydraulics, the dynamic equations,
also known as the St. Venant equations [Saint-Venant,
1871], are widely used to simulate channel flow or surface
flow with different levels of wave approximations: the kine-
matic wave, noninertia wave, gravity wave, and quasi-steady
dynamic wave. The advection-diffusion equation is also
used to simulate the transport of a wave disturbance along
the runoff pathway such as a river or over land surface. Yen
and Tsai [2001] demonstrated physically and mathemati-
cally that the advection-diffusion equation can be formulated
from different levels of wave approximations of the dynamic
equations under the assumption that the wave celerity and
hydraulic diffusivity are stepwise constant. Here, we use the
generalized advection-diffusion equation defined by Yen and

Tsai [2001] to describe the one-dimensional channel flow
and surface flow in a linear ideal watershed (Figure 1a):

@Q

@t
þ c

@Q

@x
¼ D

@2Q

@x2
: (1)

[6] In equation (1), Q (L3/t) is the flow rate at a distance
x (L) downstream from the point x ¼ 0, where the effective
precipitation Peff (L) happens, c (L/t) is the kinematic wave
celerity, and D (L2/t) is the diffusivity that reflects the tend-
ency of the water wave to disperse longitudinally as it trav-
els downstream. Peff is the available water for surface
runoff after the deduction of evapotranspiration, infiltra-
tion, canopy interception, depression storage, and any other
water loss from the total precipitation. Assuming c and D
are constants and Peff is a pulse disturbance, an analytical
solution for equation (1) can be obtained as follows:

Q x; tð Þ ¼ Peff � A

2
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4Dt ; (2)

where Brutsaert [2005] presented equation (2) for dis-
charge velocity, not discharge volume, and used a unit
value for Peff. A (L2) is the watershed surface area receiving
the Peff. The exponential term of equation (2) approximates
the Gaussian distribution with ct as the mean and 2Dt
as the variance (the whole equation is an inverse Gaussian
distribution). This indicates that the main body of the sur-
face flow moves to the outlet with a celerity c and with a
dispersion of D.

[7] The timing of the runoff peak, tmax, is determined by
differentiating Q in equation (2) with respect to t, which
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the function of two time constant parameters, � and � :
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Figure 1. Sketch of a (a) linear ideal watershed modeled
by equation and (b) nonideal or real irregularly shaped
watershed.
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� ¼ 4D

c2
; (5)

� ¼ x2

4D
: (6)

[8] The normalized discharge at any time is obtained by
taking the quotient of equations (2) and (4), and this formu-
lation facilitates intercomparison of hydrographs.

Q

Qmax
¼ t

tmax

� ��3
2

e��
1
t� 1

tmaxð Þe�1
� t�tmaxð Þ: (7)

[9] To obtain the surface diffusion wave hydrograph for
an irregularly shaped, nonideal watershed (Figure 1b), we
allow Peff to occur everywhere in the watershed and inte-
grate the normalized surface flow diffusion hydrographs of
all the individual areal elements. By assuming that the val-
ues of Peff and � are homogeneous for the whole water-
shed, the normalized hydrograph at the outlet can be
simulated by the following equation:

Q�

Q�max

¼ F �

Z A

0

Q

Qmax
dA

Z A

0
dA

; (8)

where F is a scaling parameter to set the right-hand side
maximum to 1 (the introduction of F is due to the likeli-
hood the maximum flow from different element areas
reaches the watershed outlet at different times), Q� is the
discharge rate at the outlet, Q�max is the maximum discharge
rate at the outlet, and Q and Qmax represent the discharge
rate and maximum discharge rate generated by a particular
areal element of area dA.

[10] The term areal element, dA, in equation (8) relates
to the flow path length x, as dA ¼ l � xndx, in which l is a
constant relating x and dA and n represents the projected
geometry of the watershed area, such as n ¼ 1 for a linear
watershed and n ¼ 2 for a pie-shaped watershed [Criss and
Winston, 2008b]. Parameter n is a real number and can be
obtained from the analysis of the flow length versus flow
area graph. Given that equation (6) equates � to x and D,
and setting D to a constant in the watershed, dA can be
written in terms of � instead of x : dA ¼ 2nþ1l�
D nþ1ð Þ=2� n�1ð Þ=2d�, then equation (8) can be transformed
by integration of � :

Q�

Q�max

¼ F �

Z �max

0

Q

Qmax
�

n�1
2 d�

Z �max

0
�

n�1
2 d�

; (9)

where �max represents the maximum � value among the
areal elements.

[11] The integrated surface flow diffusion hydrograph of
equation (9) gives more control over the timing of the rising
and falling limb than the nonintegrated surface flow diffu-
sion hydrograph of equation (7). The integrated hydrograph
explicitly considers each watershed areal element and there-
fore simulates a more rapid runoff response from areas near

the outlet and a more delayed runoff response from distant
areas. Therefore, the integrated hydrograph allows for an
earlier rising limb as well as a later falling limb when com-
pared with the nonintegrated hydrograph (Figure 2). Similar
differences were observed between the integrated and the
nonintegrated forms of the subsurface flow diffusion hydro-
graph [Criss and Winston, 2008a]. The integrated form
(equation (9)) requires complicated numerical calculation,
whereas the nonintegrated form (equation (7)) is a simpler
calculation, and by adjusting the � value, it provides the
same tmax and similarly shaped rising and falling limbs as
the integrated form (Figure 2). Thus, if the modeler can
accept a slightly delayed rising limb and slightly premature
falling limb in the hydrograph, the simpler nonintegrated
surface flow diffusion hydrograph (equation (7)) with
lumped � and � values is recommended to simulate the
whole watershed. In this paper, we apply the nonintegrated
hydrograph model for all the simulations.

[12] The surface flow diffusion hydrograph model of
equation (2) and its normalized version of equation (7) pro-
vide an analytical framework that facilitates examination of
watershed runoff response to rainfall impulses. From this
framework, we can compute the total amount of water
transported in response to a given rainfall pulse by integrating
Q in equation (2) over all time, which is equal to the productffiffiffiffiffiffiffiffi
�=�

p
� t3=2

maxQmax exp �=tmax þ tmax=�� 2
ffiffiffiffiffiffiffiffiffi
�=�

p� �
(see

the Appendix A for the integral process). The analysis of
equations (2) and (7) reveals that the hydrograph falling limbs
at very long times take the form of t�2/3.

2.2. Sensitivity Analysis

[13] Development of the analytical form of the two-
parameter surface flow diffusion hydrograph model pro-
vides a predictable sensitivity of the time to peak tmax, peak
discharge Qmax, and rising limb proportion (RLP) (or fall-
ing limb proportion) to the time parameters � and �. The
RLP is calculated as the integral of equation (7) with
respect to t from 0 to tmax. The sensitivity of tmax, Qmax,
and RLP to � and � is obtained by taking the partial deriva-
tive of � and � (Figure 3).

Figure 2. Integrated (dashed line) and nonintegrated
(solid line) normalized surface flow diffusion hydrographs
for � ¼ 0.5, � ¼ 7.1, and �max ¼ 10. The � ¼ 7.1 term was
set to keep tmax the same for the two hydrographs.
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[14] For tmax, (a) when � is fixed, tmax increases with the
increase of � (@tmax/@� > 0), whereas the rate of increase
(the absolute value of @tmax/@�) decreases with the increase
of � (becomes less sensitive to � as � increases; Figure
3a); (b) when � is fixed, tmax increases with the increase of
� (@tmax/@� > 0), whereas the rate of increase (the absolute
value of @tmax/@�) also decreases with the increase of �
(Figure 3b). The amplitude of @tmax/@� is larger than the
amplitude of @tmax/@�, which indicates that tmax is more
sensitive to � than to �.

[15] For Qmax, (c) when � is fixed, Qmax decreases with
the increase of � (@Qmax/@� < 0), whereas the rate of
decrease (the absolute value of @Qmax/@�) decreases with

the increase of � (Figure 3c); (d) when � is fixed, Qmax

decreases with the increase of � (@Qmax/@� < 0), whereas
the rate of decrease (the absolute value of @Qmax/@�)
decreases with the increase of � (Figure 3d). The amplitude
of @Qmax/@� is larger than the amplitude of @Qmax/@�,
which indicates that Qmax is more sensitive to � than to �.

[16] For RLP, (e) when � is fixed, RLP increases with the
increase of � (@RLP/@� > 0), whereas the rate of increase
(the absolute value of @RLP/@�) decreases with the increase
of � (Figure 3e); (f) when � is fixed, RLP increases with the
increase of � (@RLP/@� > 0), whereas the rate of increase
(the absolute value of @RLP/@�) decreases with the increase
of � (Figure 3f). The amplitude of @RLP/@� is larger than

Figure 3. Sensitivity analysis of (a) tmax to �, (b) tmax to �, (c) Qmax to �, (d) Qmax to �, (e) RLP to �,
and (f) RLP to �.
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the amplitude of @RLP/@�, which indicates that RLP is more
sensitive to � than to �.

[17] A visual demonstration of the influence of � and �
on the normalized hydrograph is shown in Figure 4. Setting
� ¼ 1 and varying � from 0.1 to infinity, � and � together
determine the rising limb, tmax, and falling limb when � is
small (Figure 4a); as � decreases, the faster the rising and
falling limb and the smaller tmax. When � is large (>10),
� determines the hydrograph shape and tmax � 2�/3.
Setting � ¼ 1 and varying � from 0.1 to 100, the normal-
ized hydrographs series indicate that � always contributes
to tmax and the hydrograph elongates as � becomes large
(Figure 4b).

3. Comparison with One-Parameter Subsurface
Flow Diffusion Hydrograph Model

3.1. Mathematical Comparison

[18] Based on aquifer water head diffusion equation and
Darcy’s law, Criss and Winston [2008b] developed the one-
parameter analytical subsurface flow diffusion hydrograph
model to represent the theory of rapid displacement of old
aquifer water and shallow pore water following rainfall
events. The normalized subsurface flow diffusion hydrograph

model [Criss and Winston, 2003] can be described by the fol-
lowing equation:

Q

Qmax
¼ t

tmax

� ��3
2

e�b 1
t� 1

tmaxð Þ: (10)

where b ¼ x2/(4D), in which x is the watershed scale, D is
the diffusivity of subsurface flow, and tmax ¼ 2b/3. Note
that b is equivalent to � in the two-parameter surface flow
diffusion model.

[19] A visual comparison of equations (7) and (10)
reveals similarities between the two-parameter diffusion
model and the one-parameter diffusion model. The only
difference is the additional exponential term e�

1
� t�tmaxð Þ in

equation (7), which represents the kinematic flow of the
water. This exponential term also exists in the exponential
and gamma function models [Criss and Winston, 2008b].
When � approaches infinity (the kinematic flow celerity is
0), the exponential term goes to 1, and the two-parameter
surface flow diffusion hydrograph model has the same form
of the one-parameter subsurface flow diffusion hydrograph
model. Therefore, the form of the subsurface flow diffusion
hydrograph model represents one extreme condition of the
surface flow diffusion hydrograph model. Many studies have
demonstrated that subsurface flow has advection behavior
[Deming et al., 1992; Garc�ıa et al., 2004; Kirchner et al.,
2001], suggesting that it is reasonable to add the advection
term to subsurface flow and that the one-parameter diffusion
hydrograph model can be extended to the two-parameter dif-
fusion hydrograph model.

[20] When compared with the one-parameter diffusion
model, the two-parameter diffusion model has more flexibil-
ity in representing hydrograph shapes; when tmax is fixed,
there are an infinite set of � and � value pairs that give the
same tmax (Figure 5). Each set of � and � value pairs will
determine the hydrograph shape (Figure 6). Although the
simulated hydrographs have different shapes, they all have
the characteristics of natural hydrographs, such as a rela-
tively fast rising limb, a relatively gradual falling limb, and
one inflection point in the rising limb and falling limb. The
rising limb flow fraction of total runoff is fixed for the one-
parameter diffusion hydrograph model at 0.0833, whereas it
can range from 0.0833 to 0.5 for the two-parameter

Figure 4. Normalized surface flow diffusion hydrographs
modeled for (a) five � values from 0.1 to þ1 with a fixed
� ¼ 1 and (b) four � values from 0.1 to 100 with a fixed
� ¼ 1.

Figure 5. The � and � value pairs where tmax ¼ 2 h rep-
resenting the rate of change in � and � for value pair.
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diffusion hydrograph model, which can better represent the
reported range from 0.07 to 0.35 for natural hydrographs
[Criss and Winston, 2008b].

3.2. Experimental Comparison

[21] Criss and Winston [2008b] applied the one-parame-
ter diffusion hydrograph model to fit the long-term observed
hydrograph for two nearby watersheds Williams Creek near

Peerless Park, MO (USGS 07019090) and Fishpot Creek at
Valley Park, MO (USGS 07019120) (Figure 7). The two
watersheds have very different basin characteristics: Fish-
pot Creek at Valley Park is a highly urbanized 24.8 km2

watershed, whereas Williams Creek near Peerless Park is a
forested 19.7 km2 watershed. The calibrated time constant
for Williams Creek near Peerless Park was 1 day, whereas
the time constant for Fishpot Creek at Valley Park was just
0.05 days. For Williams Creek near Peerless Park, the one-
parameter diffusion hydrograph model had a much better fit
with the observed hydrograph, as recorded with a higher
Nash-Sutcliff efficiency (NSE) [Nash and Sutcliffe, 1970]
of 0.605 than 0.135 for Fishpot Creek at Valley Park. Criss
and Winston [2008b] attributed the lower NSE to the flashy
response of Fishpot Creek at Valley Park due to its sensitiv-
ity to rainfall heterogeneity. We suggested that the low NSE
at Fishpot Creek at Valley Park can be attributed to the limi-
tations of the one-parameter hydrograph model in capturing
the fast falling limb typical for urbanized watersheds. To
illustrate this point, we applied both one-parameter hydro-
graph model and two-parameter hydrograph model to Fish-
pot Creek at Valley Park for the intense 12 mm/h rain storm
in 9 April 2001. The rain data were from the National Oce-
anic and Atmospheric Administration (NOAA) station at
CAHOKIA/St. Louis (WBAN: 725314 99999) with a tem-
poral resolution of 1 h, and the discharge data were from
USGS gauging station 07019120 with temporal resolution
of 5 min. The simulations were done at 5 min time interval
by assuming that the rainfall happened in the exact hour.
When the one- and two-parameter models have the same

Figure 6. Normalized surface flow diffusion hydrographs
modeled for different values of � and � with tmax ¼ 2 h.
When � ¼ 300 and � ¼ 3, the surface flow diffusion hydro-
graph overlaps the subsurface flow diffusion hydrograph,
denoted with b ¼ 3.

Figure 7. (top) Watersheds of Fishpot Creek at Valley Park, MO and (bottom) Williams Creek near
Peerless Park, MO. (left) Watershed boundaries and drainage. (right) The NLCD 2001 estimates of
impervious land cover percentages in the two watersheds.
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simulated tmax and rising limb, the two-parameter diffusion
hydrograph model was able to better simulate the rapid
hydrograph recession (Figure 8). This is attributed to model
formulation rather than the extra degree of freedom for the
two-parameter model versus the one-parameter model.

4. Applications

[22] The two-parameter diffusion hydrograph model was
further applied on four urban watersheds: Green Brook at
Seeley Mills, NJ (USGS 01403400, area 16.1 km2); Rock
Creek at Sherrill Drive Washington, DC (USGS 01648000,

area 161.1 km2); Crabtree Creek at US 1 at Raleigh, NC
(USGS 02087324, area 313.4 km2); and Salado Creek at
Loop 13, TX (USGS 08178800, area 489.5 km2). The four
watersheds are classified as urban by the National Water
Quality Assessment program data warehouse according to
the dominant land cover influencing the watershed. We
hypothesized that surface runoff dominates the discharge
after intense rainfall for these watersheds. The discharge
data are from USGS gauging stations with temporal resolu-
tion of 15 min, and the rain data are from their nearby
NOAA weather stations with temporal resolution of 1 h
(Figure 9). The simulations were done at 15 min time inter-
val by assuming that the rainfall happened in the exact
hour. The two time constants � and � and a scale parameter
that scaled the normalized hydrograph to the observed dis-
charge peak were calibrated by the Model-Independent Pa-
rameter Estimation & Uncertainty Analysis software
(PEST) [Doherty, 2001] using the Gauss-Marquardt-Leven-
berg algorithm, which integrates the advantages of the
inverse Hessian method and the steepest descent method
[Press et al., 1986]. The optimized objective function is the
weighted sum of squared differences between model-simu-
lated discharge and the observed discharge. The timing of
the peaks and the falling limbs were simulated very well,
and the simulated hydrographs had very high NSE values,
although the simulated rising limbs and peak amplitudes
did not fit the observed hydrographs perfectly (Figure 9).
The rising limb simulation is sensitive to the time of rain-
fall, and the hourly time step for rain data is too coarse to
capture 15 min time step in the runoff response. Finer reso-
lution rainfall data from within the watershed would likely
improve the runoff simulation; however, these data were

Figure 8. One-parameter diffusion hydrograph model
and two-parameter diffusion hydrograph model predictions
and the observed hydrograph for the rain events between 9
and 10 April 2001 at Fishpot Creek at Valley Park, MO.

Figure 9. Surface flow diffusion hydrograph model predictions (solid red line) and the observed hydro-
graph (star marker) for four urban watersheds: (a) Green Brook at Seeley Mills, NJ, 17–29 April 2009;
(b) Rock Creek at Sherrill Drive Washington, DC, 8–15 December 2008; (c) Crabtree Creek at US 1 at
Raleigh, NC, 5–13 September 2009; and (d) Salado Creek at Loop 13, TX, 8–24 March 2009.
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not available. The peak discharge simulation underesti-
mated observed peaks due to our use of a single-scale pa-
rameter to compute Peff for each watershed for all rain
events. We could reduce this error by changing the percent-
age of rainfall that becomes Peff during the events; how-
ever, this detracts from our presentation of equation (7) and
introduces the separate issue of initial abstractions.

5. Discussion

[23] This research developed an analytical two-parame-
ter surface diffusion hydrograph model for urban and simi-
lar basins with significant overland flow to improve storm
hydrograph prediction, represent the runoff mechanisms
with the model parameters, and maintain a parsimonious
approach to process simulation. The two time-based param-
eters used by the model represent watershed scale, flow
diffusivity, and flow celerity. Alternative two-parameter
models based on probability functions are equally parsimo-
nious; however, the parameters do not represent runoff
mechanisms. For example, Hrachowitz et al. [2010] found
that the two parameters of the gamma function were sensi-
tive to a wide range of catchment characteristics and cli-
mate; however, the parameters of the gamma function or
any other probability function have no physical relationship
with catchment characteristics. In contrast, the two time
constants � and � of the surface diffusion model have
direct physical representation of watershed and weather
controls on runoff and hydrograph features. A Geographic
Information Systems (GIS)-based analysis has documented
how surface runoff celerity and diffusivity change with
varying rain intensity, land cover, and land slope [Liu
et al., 2003], which demonstrates how � and � values are
physically representative of watershed and rainfall charac-
teristics. This research determined the parameters � and �
using inverse-model calibration and illustrated parameter sen-
sitivity to rainfall and watershed characteristics. Subsequent
research should explore methods to derive these physically
based parameters from watershed and storm based indices,
analytical relationships, or regression models [Chaplot and
Walter, 2003; Lee et al., 2007; Vogel and Kroll, 1992].

[24] Urbanized watersheds have short time of concentra-
tion, making them vulnerable to flash flooding during
intense rains [Baeck and Smith, 1998], and as urbanization
expands, more people are threatened by such flash floods
[Hapuarachchi et al., 2011]. Parsimonious models are con-
sidered to be better suited to handle flash flood and real-
time forecasting given the complexity and uncertainty in
urban runoff dynamics [Young, 2002], particularly with
ongoing changes to impervious cover and stormwater infra-
structure [Marsalek and Chocat, 2002]. Overparameterized
models are less efficient and have greater validation chal-
lenges and uncertainty than parsimonious models, particu-
larly in responding to variations in time-series rainfall
[Perrin et al., 2001]. For flash flood events with short rain-
fall durations, our two-parameter diffusion hydrograph
model was highly sensitive to the quality and time resolution
of the rainfall data. This model sensitivity to rainfall accu-
racy during urban flash floods was also present in the spa-
tially distributed models [Ogden et al., 2000], simple
infiltration models, and geomorphological instantaneous unit
hydrograph models [Javier et al., 2007]. Javier et al. [2007]

explained how individual bridges and other in-stream infra-
structure had significant control on hydrograph peak discharge
and timing, an influence our surface diffusion hydrograph
model might represent by with its celerity parameter.

[25] Hydrograph simulation can inform watershed man-
agement when used for historical analysis of runoff processes
and controls as well as in a predictive flood forecasting mode.
This value of historic prediction was demonstrated by Ogden
et al. [2011] when they analyzed how a range of possible sur-
face and subsurface drainage scenarios affected flood severity
for a historic flash flood in Baltimore, MD. In our application
of the two-parameter model, we focused on historical analysis
and to scale the simulated normalized hydrograph to match
the observed discharge and then considered watershed con-
trols � and � values and resulting time to peak and hydro-
graph inflection points. To apply the model in forecast mode
for a particular watershed, historical simulations should be
completed to identify suitable � and � values for different
classes of effective precipitation. This process can follow a
typical calibration and validation process [Refsgaard, 1997].
For subsequent forecasts of effective precipitation, the param-
eter values associated with the specific rainfall classes would
be used to estimate the flood hydrograph. Then the peak dis-
charge Qmax can be calculated based on equation (4), and Q
at any time can be predicted based on equation (7).

[26] The two-parameter diffusion hydrograph model was
developed and applied to urbanized watersheds where it
was assumed surface flow dominates the hydrograph
response. However, as we illustrated above, the one-param-
eter subsurface diffusion flow model can be extended to the
two-parameter diffusion model, which makes the two-pa-
rameter model applicable for simulating events dominated
by subsurface flow. By assigning the surface flow and the
subsurface flow with the same time constants � and �, the
two-parameter model can be applied to simulate discharge
with mixed surface flow and subsurface flow. When surface
flow and subsurface flow have different time constants �
and �, a parallel model that consists of two two-parameter
models can be constructed to simulate the hydrograph. As
urban watersheds are retrofitted and redesigned with permea-
ble pavement [Sansalone et al., 2008] and green infrastruc-
ture [Marsalek and Chocat, 2002; Schilling and Logan,
2008], stormwater will recharge the groundwater [Endreny
and Collins, 2009] and change the percentage of surface and
subsurface flow in urban hydrographs [Black and Endreny,
2006]. To facilitate hydrograph prediction and analysis in
urban watersheds, the two-parameter surface diffusion
hydrograph model is being incorporated into the iTree Hydro
model, a tool designed to help cities manage stormwater
[Yang et al., 2011]. The application of our surface diffusion
hydrograph model in a parallel mode to simulate surface and
subsurface will allow cities to assess how green infrastruc-
ture and stormwater interventions influence the timing, peak,
and recession characteristics of urban flood hydrographs.

6. Conclusions

[27] We developed a two-parameter surface flow diffu-
sion hydrograph model based on the analytical solution for
the advection-diffusion equation describing the surface
flow. This model uses only two parameters, the watershed
time constants � and �, to simulate the shape of the
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hydrograph, rising and falling limbs, and the timing of the
peak. The time constants � and � carry the information of
the watershed scale, surface flow diffusivity, and flow ce-
lerity. The previously developed one-parameter subsurface
flow diffusion model is a specific case of the surface flow
diffusion model, in which the exponential term reflecting
the effect of flow celerity is equal to 1 (flow celerity is 0).
Both hydrograph models provide excellent representation of
natural hydrograph characteristics, including the inflection
points in the rising and falling limbs, a fast rising limb and a
gradual falling limb, and time to peak. The normalized two-
parameter surface flow diffusion hydrograph model can be
used directly for hydrograph prediction with a scaling pa-
rameter to match the observed discharge. The applications
of the normalized two-parameter surface flow diffusion
model on urban watersheds showed that it can simulate
hydrograph timing and peak discharge as well as rising and
falling limb inflection points.

Appendix A: Integral of the Hydrograph Function

[28] To obtain the total amount of water transported in
response to a given rainfall pulse, we integrate Q in equa-
tion (2) over time. Based on the normalized hydrograph

equation (7), Q can be represented by Q ¼ Qmax tmaxð Þ
3
2

e
�

tmax e
tmax
� t�

3
2e�

�
t e�

t
�, in which terms t�

3
2e�

�
t e�

t
� are relevant to

t and the integral of Q with time t is reduced to the integralR1
0 t�

3
2e�

�
t e�

t
�dt. We used the saddle point method to evalu-

ate this integral, which is recognized as the Laplace trans-

form of t�
3
2e�

�
t . The principle of the saddle point method is

illustrated as follows. For an integral like I sð Þ ¼R b
a g zð Þesf zð Þdz, the exponential function makes a sharp peak

for the integrand at z0, which is the extreme point of the
function f(z). The only significant contribution to the inte-
gral comes from the immediate vicinity of the extreme point
z ¼ z0 [Arfken et al., 2012]. Therefore, the integral result is

approximated by the expression I sð Þ ¼
ffiffiffiffi
2�
p

g z0ð Þesf z0ð Þ
jsf 00 z0ð Þj1=2 , where

only the information about the position of the extreme point
of f(z) and the second-order derivative f(z) at z0 is required.
In the integral in our case, we have g tð Þ ¼ t�

3
2, f tð Þ ¼

� �
t � t

�, and the extreme point t0 ¼
ffiffiffiffiffiffi
��
p

. Calculation

shows that
R1

0 t�
3
2e�

�
t e�

t
�dt ¼

ffiffi
�
�

q
e�2

ffiffi
�
�

p
and the integral of

Q with time t from 0 to 1 equals
ffiffiffiffiffiffiffiffi
�=�

p
� t3=2

maxQmax

exp �=tmax þ tmax=�� 2
ffiffiffiffiffiffiffiffiffi
�=�

p� �
. Given the saddle point

method is an approximation, we numerically demonstrated
its validity for a large range of � and � values.
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