

i-Tree International Academy Session 1 Introduction & i-Tree Database

i-Tree Intl. Academy learning journey

Session 1

Introduction & concepts Resources & i-Tree Database

Session 2

i-Tree Eco, Canopy, MyTree Advocacy and management

Session 3

i-Tree Canopy in-depth

Session 4

i-Tree Eco & Database

Session 5

Eco project phases: planning, set-up & data collection

Session 6

Eco inventory, import system, sample project

Session 7

Eco reports, external mapping, case studies

Session 8

i-Tree Action Plans

Precipitation

Eco

Longitude

2) Device GPS jation foodban access an device)

Other GPS

Timostamp

Accesses (in)

up for coordinates frequires data connection)

The state of the state connection of the state connecti

Type in coordinates, OR 2) use device GPS, OR 3) tap s

Canopy

Plan for today

- i-Tree Academy welcome, introductions & logistics
- Learning plan overview
- i-Tree concepts & keys

-Break-

- Website & online resources
- i-Tree Database basics
- Introduce to international resource experts

Why do we have trees in our communities?

i-Tree has answers

- Answer with data
- Estimate tree benefits and their value
- Backed by peer reviewed science
- Suite of flexible software applications
- Continuously improved
- Completely free tools and support

i-Tree continues to grow: users, partners, capabilities

Support of international growth: 50% of technical support

The 2024 i-Tree Suite of Tools

Core individual tree tools

Core canopy tools

Utilities

*i-Tree Tools that can be used internationally

i-Tree Tool Relationships

i-Tree Eco our flagship tool: Available in more places

The i-Tree Framework

Structure

Function

Value

Annual Tree Benefits for Baltimore, MD

Sequestering carbon as wood in trees counteracts the CO₂ emissions of 7,387 gasoline powered passenger cars.

The filtration and removal of air pollution by the leaves of trees is estimated to reduce acute respiratory symptoms and

exacerbated asthma by 1009 incidents. This also prevents the loss of 124 school day(s) and

What does i-Tree Estimate?

Energy

Tree impacts on heating and cooling

Carbon dioxide

Storage and sequestration of a greenhouse gas

Stormwater

Avoided runoff, evaporation, transpiration

Air Quality

Interaction with key pollutants resulting in improved health

Putting a value on tree resources

All Trees: forests to city centers

...individual tree, home, garden, park, campus, neighborhood, city, region, watershed...

i-Tree model basics: Inventory data tree benefits?

Land use

i-Tree model basics: Inventory data tree benefits?

i-Tree Eco structure results

Species Diversity/Composition

Diversity reduces environmental

threats, increases resilience

Size/Age Class Distribution

Distribution of age informs sustainability

i-Tree Eco detailed results

Ways to use i-Tree

Education

- Connect students with trees
- Teach public about tree benefits
- Create engaged community
- Support math, science, ecology learning

Advocacy

- Show policy makers the benefits of trees
- Create policy focused on maximizing tree benefits
- Convince doubtful audiences
- Funding and accounting

Strategic Management

- Decide where to plant trees
- Support care, maintenance, and protection of trees
- Create optimal species palette

My Tree for Education in Ho Chi Minh City, Vietnam

Tree Lover's Day

From: Huyen Do

Nearby Address: 3 đặng văn sâm, thành phố Hồ Chí

Tree Species (type to search)*

Hướng dẫn đo cây - MyTree

Project. Sau đó chon: Metric Unit

Bước 3: Nhập thông tin về cây

i-Tree Eco for Advocacy in General Santos, Philippines

Collect Data: At least species and diameter

Beth Casten
GIS Specialist
City Planning and Development Office
General Santos City

Pilot project measuring trees in a plaza outside city hall

GenSan – Urban Forest Management Integrated in City Policy

Approved EnviCode2018 in

Article XI (MANAGEMENT OF THE CITY GREENING PROGRAM);

Section 7. Inventory, Mapping, Tagging, and Numbering of Trees in the City.

There shall be installed in the City Environment and Natural Resources Office (CENRO) a GIS-based registry of trees using the i-Tree Tool and Open Data Kit (ODK) that should reflect tree classification by species, location, ownership, age and other related data like the cost and benefit of the trees. In this regard, all trees planted or naturally grown within forest, coastal and urban areas, whether private or publicly owned, shall be numbered and entered into the registry for monitoring and management purposes.

i-Tree Canopy for equity focused strategic management

Tree cover vs. income in Mesa MCC BIO 105 research project

Courtesy of Sean Whitcomb: https://experience.arcgis.com/experience/7eedcd77946842f69c68f62203451887/

i-Tree opportunities...

- Plan and manage urban forest resources more strategically and equitably
- Integrate urban forests in policies
 - > sustainability
 - > climate
 - > resiliency
 - > air quality
 - > public health
 - > stormwater
 - equity
 - > ... and more
- Support advocacy efforts with data
- Improve preservation & health of trees and forests
- Connect urban and rural forest importance

i-Tree opportunities...

Support delivery of tree benefits

- Science and data backed decision making
- Specificity around species, location, and people
- Realistic scenarios and goals
- Accountability

Spring 2022 Season Analysis By: Marcus Tuah

https://storymaps.arcgis.com/stories/1140f07f5212458592c3b60c8e2b59e5

Keys to using i-Tree Effectively

What are your organization's biggest challenges?

https://www.nytimes.com/2019/11/01/world/asia/delhipollution-health-emergency.html

Climate Change Could Force Over 140 Million to Migrate Within Countries by 2050: World Bank Report

Floods Afflict Ukraine as It Tries to Control the Coronavirus

Environmentalists say illegal logging in the Carpathian Mountains is contributing to flooding. Rising waters forced the partial evacuation of a hospital treating Covid-19 patients.

https://www.nytimes.com/2020/06/24/world/europe/ukraine -flood-coronavirus.html?auth=login-google

https://www.worldbank.org/en/news/press-release/2018/03/19/climatechange-could-force-over-140-million-to-migrate-within-countries-by-2050world-bank-report

Keys to using i-Tree effectively

- Understand tool advantages, limitations, and options available
- Define your objectives (what does success look like?)
- Can i-Tree help you achieve desired outcomes?
- Evaluate your resources (time, equipment, money, technical capacity, potential collaborators)
- Consider pilot projects
 - used to learn
 - show potential
 - justify scaling up projects

Connect to issues that matter to people

Get started with MyTree...

Try using your browser's **Translate** function

Includes local currency conversion

MyTree.itreetools.org

...or try i-Tree Design in selected locations

Available in

- Colombia
- Mexico
- Delhi, India
- South Korea
- New Zealand
- Canada

design.itreetools.org

Website & online learning resources next

i-Tree

≣ |

♠ Support & Resources Resources Overview Video Learning

Video Learning

Explore instructional videos and archived webinars to learn more about the i-Tree applications.

You can learn about new i-Tree video learning opportunities by subscribing to the i-Tree Tools channel on YouTube!

i-Tree Eco v6

What's New in i-Tree Eco v6 - Highlights

Eco v6 highlights and overview - 5 min. - This YouTube video highlights new features and options available in the new i-Tree Eco v6 application.

How to convert an existing Eco v5 project to Eco v6

Converting Ecov5 to v6 project - 6 min. - This YouTube video describes how to update an existing Eco v5 project to use in Eco v6.

Importing inventory data into i-Tree Eco v6

Importing external inventory data into Eco v6 - 8 min. - YouTube video instructions for setting up an Eco v6 inventory project and importing in external data.

Creating an i-Tree Eco v6 sample project

Eco v6 sample project creation - 8 min. - This YouTube video demonstrates the steps to create a plot-based sample project using the new i-Tree Eco v6 application.

Creating an i-Tree Eco v6 complete inventory project

Eco v6 complete inventory project creation - 11 min. - This YouTube video demonstrates the steps to create a complete inventory project using the new i-Tree Eco v6 application.

Eco Plot Establishment

- 1. Basic Eco sample plot establishment 2 min. This video demonstrates how to lay out a simple 1/10 acre plot for an Eco sample project.
- 2. Eco wooded plot establishment 3 min. This video demonstrates how to lay out an Eco sample plot partially in a wooded area.
- 3. Measuring plot reference object 2 min. This video demonstrates how to measure a

ECO GUIDE TO Post-stratified Samples

What Is a Post-stratified Sample?

If you have decided to conduct a **sample inventory**, you will be collecting data for throughout your study area. In this type of project, you can choose to stratify or s study area into smaller units that can help clarify differences across the study are example, you might stratify your study area by land use, neighborhood, or politics so that you can compare urban forest effects in different strata.

With a **post-stratified sample**, you have chosen to subdivide the study area <u>after</u> determine the plots and collect your field data. Your Eco results will be estimated study area as well as by strata. The decision to stratify should ultimately be base current and future project objectives and available resources.

Tip

The directions in this guide assume that you are working with an exis project that has already been designed and created as described in t User's Manual. See the User's Manual for help if you have not com these steps.

Post-stratified Sample Methods

i-Tree Eco offers a two-step method for post-stratifying your existing Eco project, the existing stratification schema. Second, reassign strata to your existing plots. stratifying your project in Eco, click on your computer's Start button > (All) Prog > i-Tree Eco v6.

To open an existing project:

- 1 Click File > Open Project.
- 2 Browse to the folder where you saved your project, click on the file name, Open.

www.itreetools.org

Understanding i-Tree: Summary of Programs and Methods

ASSESSING ECOSYSTEM SERVICES AND VALUES IN ECO

To see which tree field variables are used to estimate various ecosystem services and values, see Table 2.

AIR POLLUTION REMOVAL

This section relates to estimating hourly pollution removal by trees, shrubs and \underline{arass} for carbon monoxide (CO), nitrogen dioxide (NO₂), ozone (O₃), particulate matter less than 10 microns (PM₁₀), particulate matter less than 2.5 microns (PM₂₃) and sulfur dioxide [SO₂]. Air pollution removal is estimated based on modeling of gas exchange and particulate matter interception at the leaf level based on local environmental conditions.

Required user inputs

- Tree, shrub and grass cover
- Tree species

Methods Overview

This module calculates the hourly dry deposition of O₃, SO₂, NO₂, CO, PM₁₀ and PM₂₅ to vegetation throughout the year based on tree, shrub and grass cover data, hourly NCDC weather data, and U.S. Environmental Protection Agency (EPA) pollution-concentration monitoring data. Missing hourly pollution data are filled in based on procedures detailed in <u>Hirabayashi and Endreny (2016</u>]. Weather data quality information are detailed in <u>Hirabayashi (2017</u>]. Daily particulate matter data are used as hourly inputs (i.e., daily average is used for each hour of the corresponding day). If multiple monitors exist, the average of all monitor data are used. Missing hourly pollution data are filled in based on procedures detailed in <u>Hirabayashi and Kroll (2017</u>).

Pollution removal or downward pollutant flux (F; in $g/m^2/s$) is calculated as the product of the deposition velocity (V_d ; in m/s) and the pollutant concentration (C; in g/m^3):

F = VaC

Deposition velocity is calculated as the inverse of the sum of the aerodynamic (R_o) , quasi-laminar boundary layer (R_b) and canopy (R_c) resistances (Baldocchi et al. 1987).

 $V_d = 1 L(R_0 + R_0 + R_0)$

- 4

orest Service

tion date: December 2018

-Break-

i-Tree International Academy Session 1 Online Resources & i-Tree Database

Website & online learning resources

i-Tree

🕷 » Support & Resources » Resources Overview » Video Learning

Video Learning

Explore instructional videos and archived webinars to learn more about the i-Tree applications.

You can learn about new i-Tree video learning opportunities by subscribing to the i-Tree Tools channel on YouTube!

i-Tree Eco v6

What's New in i-Tree Eco v6 - Highlights

Eco v6 highlights and overview - 5 min. - This YouTube video highlights new features and options available in the new i-Tree Eco v6 application.

How to convert an existing Eco v5 project to Eco v6

Converting Ecov5 to v6 project - 6 min. - This YouTube video describes how to update an existing Eco v5 project to use in Eco v6.

Importing inventory data into i-Tree Eco v6

Importing external inventory data into Eco v6 - 8 min. - YouTube video instructions for setting up an Eco v6 inventory project and importing in external data.

Creating an i-Tree Eco v6 sample project

Eco v6 sample project creation - 8 min. - This YouTube video demonstrates the steps to create a plot-based sample project using the new i-Tree Eco v6 application.

Creating an i-Tree Eco v6 complete inventory project

Eco v6 complete inventory project creation - 11 min. - This YouTube video demonstrates the steps to create a complete inventory project using the new i-Tree Eco v6 application.

Eco Plot Establishment

- 1. Basic Eco sample plot establishment 2 min. This video demonstrates how to lay out a simple 1/10 acre plot for an Eco sample project.
- 2. Eco wooded plot establishment 3 min. This video demonstrates how to lay out an Eco sample plot partially in a wooded area.
- 3. Measuring plot reference object 2 min. This video demonstrates how to measure a

ECO GUIDE TO Post-stratified Samples

What Is a Post-stratified Sample?

If you have decided to conduct a **sample inventory**, you will be collecting data for throughout your study area. In this type of project, you can choose to stratify or s study area into smaller units that can help clarify differences across the study are example, you might stratify your study area by land use, neighborhood, or politics so that you can compare urban forest effects in different strata.

With a **post-stratified sample**, you have chosen to subdivide the study area <u>after</u> determine the plots and collect your field data. Your Eco results will be estimated study area as well as by strata. The decision to stratify should ultimately be base current and future project objectives and available resources.

Tip

The directions in this guide assume that you are working with an exis project that has already been designed and created as described in t User's Manual. See the User's Manual for help if you have not com these steps.

Post-stratified Sample Methods

i-Tree Eco offers a two-step method for post-stratifying your existing Eco project, the existing stratification schema. Second, reassign strata to your existing plots. stratifying your project in Eco, click on your computer's Start button > (All) Prog > i-Tree Eco v6.

To open an existing project:

- 1 Click File > Open Project.
- 2 Browse to the folder where you saved your project, click on the file name, Open.

ASSESSING ECOSYSTEM SERVICES AND VALUES IN ECO

To see which tree field variables are used to estimate various ecosystem services and values, see Table 2.

AIR POLLUTION REMOVAL

This section relates to estimating hourly pollution removal by trees, shrubs and \underline{arass} for carbon monoxide (CO), nitrogen dioxide (NO₂), ozone (O₃), particulate matter less than 10 microns (PM₁₀), particulate matter less than 2.5 microns (PM₂₃) and sulfur dioxide [SO₂]. Air pollution removal is estimated based on modeling of gas exchange and particulate matter interception at the leaf level based on local environmental conditions.

Required user inputs

- Tree, shrub and grass cover
- Tree species

Methods Overview

This module calculates the hourly dry deposition of O₃, SO₂, NO₂, CO, PM₁₀ and PM₂₅ to vegetation throughout the year based on tree, shrub and grass cover data, hourly NCDC weather data, and U.S. Environmental Protection Agency (EPA) pollution-concentration monitoring data. Missing hourly pollution data are filled in based on procedures detailed in <u>Hirabayashi and Endreny (2016)</u>. Weather data quality information are detailed in <u>Hirabayashi (2017)</u>. Daily particulate matter data are used as hourly inputs (i.e., daily average is used for each hour of the corresponding day). If multiple monitors exist, the average of all monitor data are used. Missing hourly pollution data are filled in based on procedures detailed in <u>Hirabayashi and Kroll (2017)</u>.

Pollution removal or downward pollutant flux (F; in $g/m^2/s$) is calculated as the product of the deposition velocity (V_a ; in m/s) and the pollutant concentration (C; in g/m^3):

 $F = V_d C$

Deposition velocity is calculated as the inverse of the sum of the aerodynamic (R_0) , quasi-laminar boundary layer (R_b) and canopy (R_c) resistances (Baldocchi et al. 1987).

Va = 1 L(Ra + Rb + Rc)

42

ree.

J. Nowak Forest Service

tion date: December 2018

www.itreetools.org

i-Tree model basics: Structure > Function > Value

 Measured tree variables used to estimate foliage volume and wood volume

Structure

 Eco estimates tree leaf area using species specific equations, or averaging of equations

Function

Estimated benefits largely based on leaf area interactions with <u>local weather and air pollution</u>

Value

- Model summarizes tree and forest resource structure, function & value.
- Monetary values are based on various US-based economic methods (e.g. social cost of carbon, EPA BenMap for pollution, regional infrastructure & mgt. cost for hydrology)

How do locations outside the US get into Eco?

i-Tree Database

- Web-based submission of data for a single city
- Partial data acceptable
- City permanently integrated into i-Tree Eco for all users
- New species submission

database.itreetools.org

Location Data

City Data

Pollution Data

Weather Data

Species Data

i-Tree Database integration options & considerations

Full Integration Countrywide

- Extensive data required for all desired national cities
- \$\$\$ funding required for integration work
- Collaborating partners work directly with i-Tree Development Team
- Longer development & integration timeline
- Key Benefit: Countrywide access to i-Tree Eco
- Future countrywide updating not typically considered
- Options available for updating individual city data

Individual Global City with Pollution & Precipitation

- City info, hourly pollution and precipitation for (1) city
- No fee for integration
- Individual submits all info & data using i-Tree DB form using templates
- New city & data typically available in Eco within 3-6 months
- Key Benefit: Eco use for individual city or nearby location
- Key Use: Student projects or pilot or demo projects
- Multiple individual cities can be submitted
- Future updating using i-Tree Database

Global City with Partial Data

- City information submitted using ITDB with available precipitation and/or partial pollutant data (e.g. PM2.5 only)
- No fee for integration
- Additional pollutant or precipitation data can be added when available
- New city & data typically available in Eco within 3-6 months
- Pollution and hydrology reports limited to available pollutant data, or inaccurate rainfall
- Multiple cities can be submitted, and data updated with ITDB

Global City with No Data

- City location only information submitted using ITDB
- No fee for integration
- No pollution reports and inaccurate hydrology effects reports
- Good option for cases with no pollution or rainfall data
- Numerous reports still available including written summary, structural analyses, carbon sequestration & storage, oxygen
- Commonly used to start project data collection while working on obtaining precipitation & pollution data

How do countries get into Eco?

Full integration of entire country

- Local partners provide data and funding to support integration
- i-Tree Eco functions the same as it does in the US

Canada Australia United Kingdom Mexico European Union Colombia South Korea Japan New Zealand Ukraine

Location Data

City Data

Pollution Data

Weather Data

Species Data

i-Tree Member Countries - Data Inputs

Species Data - Additions or updates

Required

- ➤ Genus and Species
- >Common Name
- ➤ Leaf Type
- ➤ Growth Rate
- ➤ Longevity
- ➤ Height/DBH at Maturity

Optional

- ➤ Native status
- **≻**Invasive
- >Threatened or Endangered
- ➤ Pest Risk

i-Tree Member Countries - Data Inputs

Location data for each administrative division

- ➤ Boundary Data (GIS)
- **≻**Name
- > Elevation
- **≻**Population
- > Frost Free Period
- ➤ Mean minimum temperature
- ➤ Climate indices

i-Tree Member Countries - Data Inputs

Hourly Pollution Monitor Data

- Address
- Location Latitude/Longitude
- > Pollutants
 - Carbon Monoxide
 - Nitrogen Dioxide
 - Ozone
 - PM 2.5 particulate matter 2.5 micrometers or less
 - PM 10 particulate matter 10 micrometers or less
 - Sulphur Dioxide

Year	Month	Spname	Cityname	Addr	Units	Quantity	Day	Hour
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	1
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	2
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	3
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	4
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	5
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	6
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	7
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	8
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	9
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	10
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	11
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	12
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	13
2013	1	NO2	Aberdeen City	ABDN1	7	0	1	14
2042			41 1 60		-	^		4-

i-Tree Member Countries - Optional Data Inputs

Weather Data

- Hourly precipitation data linked to an NCDC weather station
- Submission of local weather station data for improved accuracy or improved local coverage

Local Monetary Values

- > Pollution
- > Carbon
- Hydrology
- Energy Costs
- Structural Value
- Produce Price Indices

How do individual global cities get into Eco?

Global city integration

- Global users provide data for their city.
- i-Tree Eco functions the same as it does in the US for that individual city
- No cost & partial data options

Many individual global cities available with pollution & precipitation

Delhi, India Montevideo, Uruguay Concepcion, Chile Sao Paulo, Brazil Bangkok, Thailand Kowloon, Hong Kong Beijing, China Auckland, New Zealand Lahore, Pakistan Kaohsiung City, Taiwan Tokyo, Japan ...

Location Data

City Data

Pollution Data

Precipitation Data

Species Data

i-Tree Database - View Database

https://database.itreetools.org/

i-Tree Database - Add Data

https://database.itreetools.org/

i-Tree Database - Add Data

Add Species

Welcome a, this application allows you to add new tree species and their associated information to the i-Tree databases for use in the i-Tree tools and applications. Please fill in all required information and then submit this information to the i-Tree Team.

It is recommended that prior to attempting to submit species information you should go to the View Database page to make sure that the species is not already in our database. Please only submit tree species, do not submit data for shrubs, vines, or herbaceous plants.

Use of this tool indicates acceptance of the EULA

Feedba

Add Precipitation

Welcome Ana Cristina Castillo, this application allows you to add hourly rainfall data associated with a weather station to the i-Tree tools and applications. Please use the template provided to format your data and then submit this information to the i-Tree Team.

Local benefits from local trees start with LOCAL DATA!!

❖ Fabiola Lopez

U.S. Forest Service International Programs
Mexico and Latin America

María del Pilar Arroyave

U.S. Forest Service International Programs Colombia

Akshat Tyagi

Give Me Trees Trust India

2025 – i-Tree Open Academy Session 1: Introduction to i-Tree

Understanding the benefits of trees for people, places, and planning

María Arroyave
Urban Ecology Coordinator
U.S. Forest Service – International
Programs
Colombia Program
mariaarroyaveusfs@gmail.com

i-TREE INTEGRATION TO COLOMBIA

Location
Climate
Air pollution
Tree species

Adding to i-Tree Eco the data required by the software

i-Tree Eco Projects:

- Barranquilla
- Bogotá
- Cali
- Cartagena
- Medellín
- Quindío (12 cities)
- Santa Marta
- Valledupar
- Valle de Aburrá (10 cities)
- Valle del Cauca (12 cities)

URBAN FOREST ECOSYSTEMS SERVICES AT DIFFERENT SCALES

Groups of trees in parks, residential areas, university campus

Neighborhoods, City, Metropolitan area

MEDELLÍN AND THE ABURRÁ

• Extension: 1.152 km²

Temperature: 18 – 22 °C

Height above sea level: 1300 – 2800 m

• Rainfall: 1500 - 2500 mm

Population: 3.306.490

We established 398 plots of 400 m² distributed randomly through the urban area

URBAN FOREST ECOSYSTEM SERVICES IN MEDELLÍN AND ABURRÁ VALLEY

Abril 2017

UNIVERSIDAD EIA

i-TREE CANOPY MEDELLÍN - COLOMBIA

	Clase de cobertura	Descripción	Puntos	% Cobertura ± SE	Área (km²) ± SE
AB	Arbórea	Incluye árboles y arbustos. Esta es la cobertura sobre la cual se analiza la remoción y retención de contaminantes.	281	28,10 ± 1,42	28,48 ± 1,44
AG	Agua	Incluye ríos, quebradas, lagos.	9	$0,90 \pm 0,30$	0,91 ± 0,30
СТ	Construcción	Incluye todo tipo de edificación y viviendas.	472	47,20 ± 1,58	47,83 ± 1,60
НВ	Herbácea	Incluye pastos, grama y rastrojo.	45	$4,50 \pm 0,66$	4,56 ± 0,66
ОТ	Otros	Incluye centros deportivos, parqueaderos y las demás coberturas que se encuentren en la ciudad y no se recojan en las anteriores	22	2,20 ± 0,46	2,23 ± 0,47
SD	Suelo desnudo	Incluye suelo sin ninguna cobertura.	20	2,00 ± 0,44	2,03 ± 0,45
VI	Vías	Incluye vías pavimentadas.	151	15,10 ± 1,13	15,30 ± 1,15
Tota	I		1000	100.00	101.34

i-TREE ECO RESULTS FOR MEDELLÍN

Tree cover: 28%

Number of trees: 660.000

Number of species: 1.135

Native species: 60%

CO₂ storage: 140.482 ton

CO₂ sequestration: 7.066 ton/year

Total removal of pollutants: 102 ton/year

Oxygen production: 5.134 tons/year

CARBON STORAGE AND SEQUESTRATION

Comunas in Medellín

Communities with lower economic resources have a lower supply of ecosystem services.

CO₂ Storage (ton/ha)

CO₂ Sequestration (ton/year*ha)

POLLUTANT REMOVAL

Comuna

URBAN FOREST ECOSYSTEM SERVICES MAP MEDELLÍN

ID Árbol 350

Longitud

-75.56176094

Latitud

6.255151485

Nombre de la especie

Handroanthus chrysanthus

Nombre común

Guayacan amarillo

Diámetro (cm)

27

Altura (m)

12

Condición

Buena

Almacenamiento de carbono (kg)

187

Secuestro bruto de carbono (kg/año)

16

Escurrimiento evitado (m³/año)

2

Eliminación de la contaminación (g/año)

349

https://www.google.com/maps/d/edit?mid=11Gc6p21-vUXc7S75cLVZhIxeMgDtxB0&usp=sharing

BENEFITS OF HERITAGE TREES IN

Análisis del ecosistema

Arboles Patrimonio Medellín

Efectos y valores del bosque urbano octubre 2023

Tabebuia rosea

Nombre común

Guayacán Rosado, Roble

DAP (cm)

49.34

Altura total (m)

12.5

Almacenamiento de carbono (kg)

426

Captura de carbono (kg/año)

20.5

Escurrimiento evitado (m³/año)

2.5

https://www.google.com/maps/d/edit?mid=1QLxYputKRXqgiUcq8 CB4wB2z4DWjMuvk&usp=sharing

ECOSYSTEM SERVICES FORECAST (30

YEARS)

GRI ORI DOR -DELLÍ

URBAN FOREST ECOSYSTEM SERVICES IN BOGOTÁ

Carlos Vicente Rey Guerra Johan Manuel Calderón Rodríguez Miguel Quirama Aguilar

Línea de Investigación Aplicada - STO

URBAN FOREST ECOSYSTEMS

Rey, Calderón & Valenzuela, 2023

URBAN FORESTS IN CALI COMMUNITY NETWORK

Ecosystem services:

- Pollutant removal: 280 kg/year
- Carbon storage: 1.528 ton
- Carbon dioxide sequestration: 51 toneladas/year
- Oxygen production: 37 ton/year
- Avoided runoff: 481 cubic meters/year

Bosque Urbano LA FLORA

Naturaleza viva y pulmón verde, que genera bienestar a la Comunidad

Red Comunitaria BOSQUES URBANOS

Santiago de Cali www.bosquesurbanosdecali.com

¿Qué es i-tree?

- Es un software que caracteriza la estructura del bosque urbano y cuantifica los servicios exosistérricos que provee, así como su valor monetario.
- Es de uso gratuito, fácil de usar, cuenta con soporte científico y es evaluado por pare académicos.
- Una evaluación de la estructura, la función y el valor de la vegetación se llevó a cabo durante 2021. Los datos de Y1 árboles localizados en el Bosque Urbano de La Flora se analizaran usando el modelo i-Tiree Eco desarrollado por el Servicio Forestal de EBUU, Fetroción de Investigación del Norte.

CITIZEN SCIENCE USING MyTree

MyTree Benefits For this year.

Guayacan amarillo, (Handroanthus chrysanthus)

Serving Size: 37.24 cm. diameter

Condition: Excellent

Location: Medellín, Antioquia, Colombia

Estimated this year: \$16.59

	Annual values:
Carbon Dioxide Uptake	\$7.52
Carbon Sequestered ¹	47,66 kg
CO ₂ Equivalent ²	174,74 kg
Storm Water Mitigation	\$0.14
Runoff Avoided	61,37 L
Rainfall Intercepted	364,47 L
Air Pollution Removal	\$8.93
Carbon Monoxide	61,66 g
Ozone	186,27 g
Nitrogen Dioxide	210,58 g
Sulfur Dioxide	133,51 g
PM _{2.5}	3,83 g

Values	Values are totals to date:		
Carbon Dioxide Uptake ⁴	\$89.76		
Carbon Storage ⁴	568,67 kg		
CO ₂ Equivalent ^{2, 4}	2085,14 kg		

USE OF i-TREE RESULTS

- ✓ Show the contribution of the urban forest as a Nature Based Solution for climate change and air pollution mitigation
- ✓ Support for the design of Payment of Ecosystem Services mechanisms.
- ✓ Input for carbon footprint offset estimation: How many trees would offset my carbon footprint?
- ✓ Identify the oportunities to involve people in conservation and management of green areas
- Justification for the investment for the maintenance of Urban Forests
- Recognition of the importance of the urban forests by the community.

REFERENCES

- Arroyave-Maya, M., Posada-Posada, M., Nowak, D. y Hoehn, R. (2019). Remoción de contaminantes atmosféricos por el bosque urbano en el valle de Aburrá. Colombia Forestal, 22(1), 5-16. DOI: http://dx.doi.org/10.14483/2256201X.13695
- Arroyave María del Pilar, Londoño Catalina, Argoty Camila y Meza Valeria (2015). El valor del bosque urbano. En: Naturaleza urbana: plataforma de experiencias. Editora Mejía María Angélica. Bogotá: Instituto <u>Alexander von Humboldt. http://www.humboldt.org.co/images/pdf/naturaleza_urb/6-valor-bosque-urbano.pdf</u>
- Argoty, C. y Meza, V. (2014). Evaluación del servicio ecosistémico de remoción de contaminantes por parte del bosque urbano en sitios piloto del Valle de Aburrá. Escuela de Ingeniería de Antioquia Estado: Tesis concluida Ingeniería Ambiental. https://repository.eia.edu.co/handle/11190/1929
- Jardín Botánico de Bogotá, Carlos V. Rey, Johan M. Calderón, Germán D. Álvarez. (2023). Servicios Ecosistémicos del Arbolado Urbano de Bogotá.
- Red Comunitaria de Bosques Urbanos de Cali.(2023). Los Beneficios de Cinco Bosques Urbanos de Cali,
 Valle del Cauca.

Thank you!

María Arroyave
Urban Ecology Coordinator
U.S. Forest Service – International
Programs
Colombia Program
mariaarroyaveusfs@gmail.com

i-Tree International Academy

I-TREE AROUND THE WORLD: MEXICO EXPERIENCE

S. Fabiola López L.

Project Coordinator, Mexico Program
IP, U.S. Forest Service

December 2024

i-Tree for Mexico

Integration by Davey Institute & i-Tree Mexico Consultant

- Location and population of main cities

Hourly weather data by year

Hourly pollution data by year

Partition Maps

- New species and more.
- Translation of program interface and manuals into Spanish

Adapted to Mexico

2017-2018

Integration of main Mexico's cities to i-Tree (International Programs and Davey Institute)

Implementation of pilot projects in Mexico City

Support & training for implementing i-Tree international tools

2019-2024

i-Tree Workshops in Mexico, Peru, Guatemala Salvador and

Technical assistance in designing and implementing urban tree inventories

Who is using i-Tree in Mexico?

 Municipalities & consultants are using i-Tree to create tree maintenance or management plans or plant strategies

 NGOs are using it to encourage community engagement and urban greening efforts

Strength tree advocacy efforts and divulge why trees are important

Other projects with i-Tree

i-Tree + Social assessment + San Marcos Neighborhood - Merida City

- 1. Survey to know the community perception about trees
- 2. Tree Inventory with Eco to make a tree trial
- 3. Community Engagement Activities

i-Tree + StewMap La Paz City

i-Tree Canopy Analysis

How Many Stewards Are In Each Neighborhood?

Overlapping \rightarrow where we could create Urban Oasis

Basin information

i-Tree tools are useful to:

Community
engagement
&
Tree monitoring

(Volunteering & youth education)

i-Tree Delhi

Akshat Tyagi, Give Me Trees Trust

My organization-Give Me Trees

22.7 million trees planted and preserved

200 cities

600 schools

700

Before/after snapshopts of a few of the microforests we have developed

But the reality in Delhi is different....

IN THE NEWS.....

The New Hork Times

New Delhi, Choking on Toxic Air, Declares Health Emergency

Schools were closed after pollution in India's capital soared, reaching levels many times the global safe limit.

Air Quality Index: 50

Peak of COVID lockdown in 2020

Air Quality Index: 350

Normal Day in Delhi

The Golden Circle

Why = The Purpose

What is your cause? What do you believe?

How = The Process

Specific actions taken to realize the Why.

What = The Result

What do you do? The result of Why. Proof.

PART 1: WHY did we start using i-Tree in Delhi?

The important questions to

ask...

Even though the government figures say that there is 23% green cover in Delhi, the area still suffers from **extreme** air pollution.

It is important to understand:

- (i) WHAT does the green cover in Delhi consist of?
- (ii) How effective are the trees in removing air pollution?
- (iii) Which tree species are most effective in removing air

No census of trees available for Delhi

Delhi has no data on number of trees, no census conducted in the last two decades: RTI reply

Jasjeev Gandhiok | TNN | Updated: Jul 24, 2020, 23:23 IST

Image used for representational purpose only

NEW DELHI: No tree census has been conducted in Delhi in the past decade and no data is available on the number of trees in the New Delhi Municipal Council area for the past two decades. This has been revealed in an RTI reply to a Delhi-based researcher.

Kohli filed an RTI on the tree census carried out from 2010-2020, along with data on

tree count conducted in the NDMC area between 2000 and 2020. According to the records maintained by the Delhi forest and wildlife department, no tree census had been conducted during the period.

The researcher, who works with Centre for Policy Research (CPR), said, Delhi Tree Authority — a statutory body set up under Delhi Preservation of Trees Act, 1992

PART 2:

HOW did we collect and analyse data using i-Tree in Delhi?

What have we done? Adaption of i-Tree Eco

- □ Using i-Tree Eco (Eco stands for Ecosystem services) to calculate benefits of trees in Delhi
- ☐ For this, we have:
- Collected data of trees from all across

Delhi

HOW DID WE DO THIS?

- ☐ Randomized 400 points (plots) in Delhi to collect trees data
- ☐ A Plot is basically a circular area with 20 meters radius. We measure all the trees in the circular area

HOW DID WE DO

THIS?
Collecting trees & shrubs data from 400 random locations

Plots covered across Delhi

400 Plots Completed

- Completed data collection and inventory of all 400 plots across Delhi
- Total time taken for data collection: 1.5 years
- Number of people involved in data collection: 3
- More than 500+ field visits
- Detailed report on results completed

TYPES OF PLOTS

PART 3:

WHAT conclusion did we arrive at?

8.1%

Snapshot of Results

Prosopis juliflora (Vilayati keekar/ Mesquite- invasive)

Carbon absorbed in lifetime by a mature tree:

sopis juliflora (27%)

Invasive

Ficus religiosa (Peepal tree –

Carbon absorbed in lifetime by mature tree:

Native

What else, apart from Air **Pollution**

Proper decision making and policy advocation/

Create awareness

DIFFERENT WAYS THE DATA CAN BE USED

Correlation between trees and......

Air pollution removal

Human Health risk factor

Evapo-Transpiration

Disaster

Wealth divide

Street flooding

Carbon absorption

Emotional health