Winter 2025

i-Tree International Academy

Winter 2025

i-Tree International Academy

Helpful guidelines for this session:

- Please mute your audio during presentations
- Use chat window for comments and questions
- Please be patient we will try to answer all questions

i-Tree website:

www.itreetools.org

i-Tree Support email:

info@itreetools.org

Winter 2025

i-Tree International Academy

Meet the i-Tree Team!

Liza Paqueo USDA Forest Service International Programs Washington, DC

Maria Arroyave USDA Forest Service International Programs Columbia

Fabiola Lopez USDA Forest Service International Programs Mexico

Dave Bloniarz
USDA Forest Service
Northern Research Station

Scott Maco
The Davey Institute

Jason Henning The Davey Institute USDA Forest Service

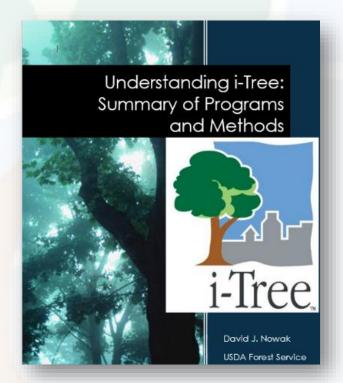
Krista Heinlen
The Davey Institute
USDA Forest Service

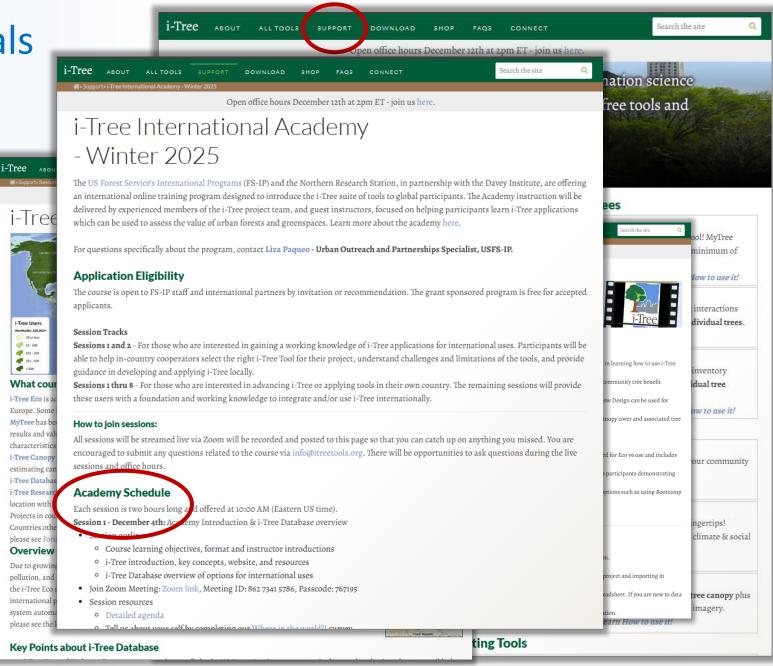
Ana Castillo
The Davey Institute

Akshat Tyagi Give Me Trees Trust India

i-Tree website:

www.itreetools.org


i-Tree Support email:


info@itreetools.org

Website & Course Materials

www.itreetools.org

- Links for all tools
- Manuals and videos
- International reports

i-Tree Canopy: Estimating Your Coverage Through Image Analysis

Urban Canopy As Community Asset
Tools For Benefits Assessments

Krista Heinlen

Davey Institute/USDA

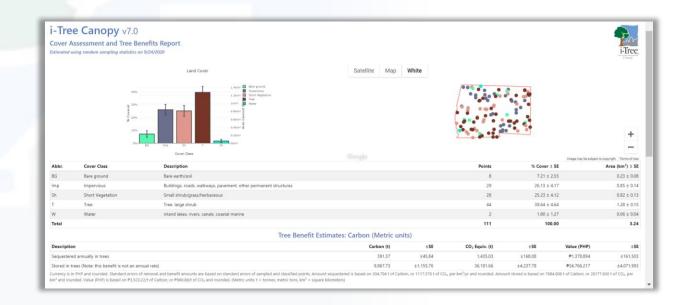
Forest Service

Urban Canopy As Community Asset

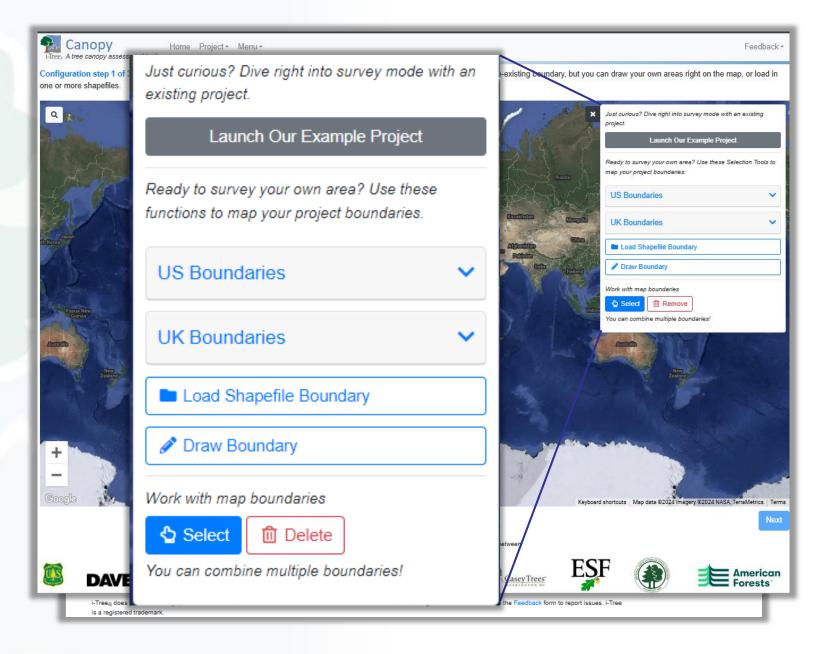
- Benefits of Urban Trees
 - > Improve air quality and public health
 - Trees store carbon and filter air pollutants
 - Mitigate flooding and stormwater concerns
 - Slowing down rainfall runoff
 - > Reduce energy bills
 - Shade!
 - > Strengthen ecosystem diversi
 - Wildlife and pollinators
 - ➤ Build social capital
 - But before you san tell that st

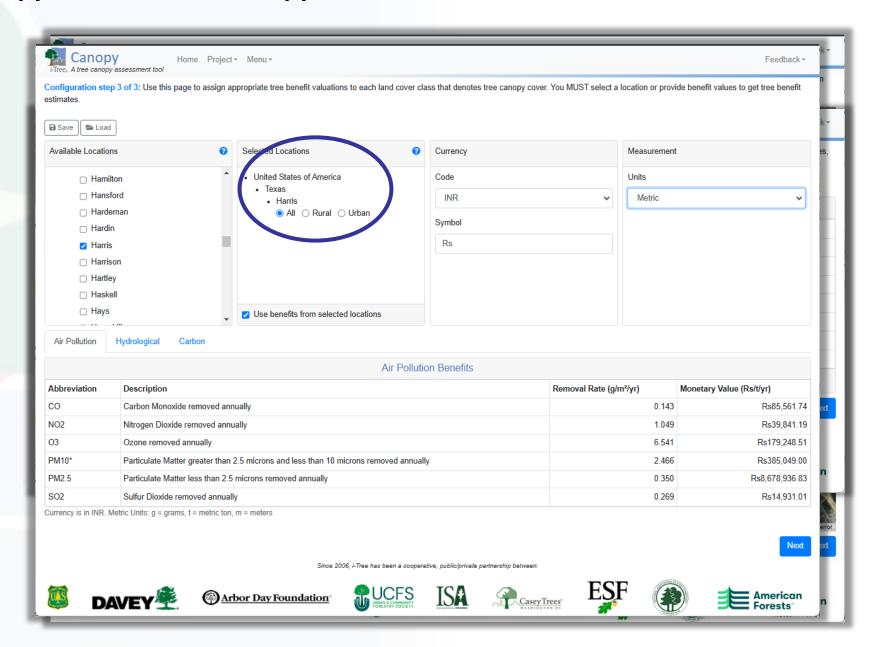
Where Do I Have It?

Defining Canopy Assets: Start Simple To See The Big Picture


- i-Tree Canopy
 - > Combining the utility of Google with US Forest Service science
 - Available online no download required!
 - > Imagery covers the globe
 - User can assess what's on the ground for desired location...quickly

There's a map for that...



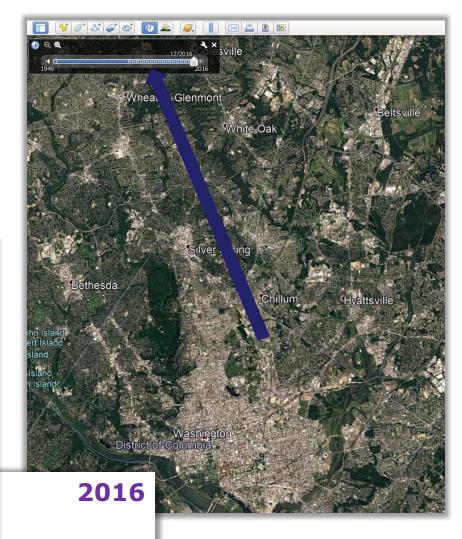

- The view from the top
 - Capturing data on land cover (percent canopy, impervious, and more), and estimating benefits using aerial imagery
 - Estimate air pollution and carbon benefits of tree canopy, with associated values
 - > Ability to measure change over time

canopy.itreetools.org

How many points matters...

Canopy Home Project - Report - Menu -Feedback * i-Tree. A tree canopy assessment tool Tree Benefit Estimates: moon (Metric units) Description ±SE Carbon (t) ±SE CO₂ Equiv. (t) Value (PHP) Sequestered annually in trees 766.14 ±86.98 2,809.19 ±318.93 ₱8,348,886 ±947,868 Stored in trees (Note: this benefit is not an annual rate) ±4,218.49 ±12,537,320 10,133.67 ±1,150.50 37,156.79 ₱110,429,584 d and classified points. Amount sequestered is based on 581.000 t of Carbon, or 2130.333 t of CO2, pe Currency is in PHP and rounded. Standard errors of removal and benefit amounts are based on standard errors of same km²/yr and rounded. Amount stored is based on 7684.808 t of Carbon, or 28177.630 t of CO₂, per km² and rounded. Value (PHP) ≥ 5 ased on ₱10,897.29/t of Carbon, or ₱2,971.99/t of CO₂ and rounded. (Metric metric tons, km2 = square kilometers) Tree Benefit Estimates: Air Pollution (Metric units) Abbr. Description Amount (kg) ±SE Value (PHP) ±SE CO Carbon Monoxide removed annually 80.23 ±9.11 ₱7,072 ±803 NO2 522.22 ±59.29 Nitrogen Dioxide removed annually ₱685 ±78 03 Ozone removed annually 8,893.81 ±1,009.73 ₱80,466 ±9,135 SO2 Sulfur Dioxide removed annually 93.72 ±10.64 ₱44 ±5 PM2.5 ₱150,022 Particulate Matter less than 2.5 microns removed annually 469.14 ±53.26 ±17,032 PM10* Particulate Matter greater than 2.5 microns and less than 10 microns removed annually 3,526.87 ±400.41 ₱1,461,529 ±165,931 13.585.99 ±1.542.45 ₱1.699.819 ±192.984 Total Currency is in PHP and rounded. Standard errors of removal and benefit amounts are based on standard errors of sampled and classified points. Air Pollution Estimates are based on these values in kg/km²/yr @ ₱/kg/yr and CO 60.839 @ ₱88.16 | NO2 396.019 @ ₱1.31 | O3 6,744.570 @ ₱9.05 | SO2 71.072 @ ₱0.47 | PM2.5 355.773 @ ₱319.78 | PM10* 2,674.578 @ ₱414.40 (Metric units: kg = kilograms, km² = square kilometers) Tree Benefit Estimates: Hydrological (Metric units) Abbr. Benefit Amount (MI) ±SE Value (PHP) ±SE **AVRO** Avoided Runoff 1.49 ±0.17 ₱204,387 ±23,205

Evaporation 222.59 ±25.27 N/A N/A Interception 222.59 ±25.27 N/A N/A Transpiration 296.78 ±33.69 N/A N/A PE Potential Evaporation 1,024.32 ±116.29 N/A N/A PET Potential Evapotranspiration 951.84 ±108.06 N/A

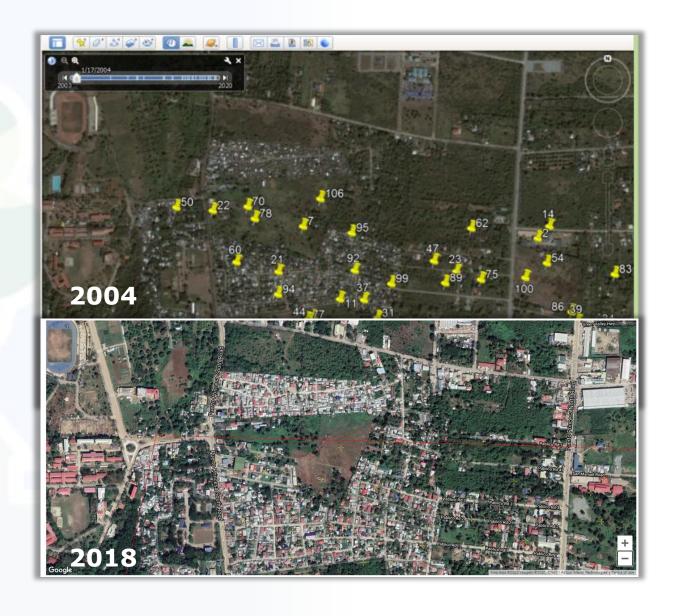

Currency is in PHP and rounded. Standard errors of removal and benefit amounts are based on standard errors of sampled and classified points. Hydrological Estimates are based on these values in Ml/km²/yr @ ₱/Ml/yr and rounded:

AVRO 1.133 @ ₱136,833.00 | E 168.801 @ N/A | I 168.801 @ N/A | T 225.064 @ N/A | PE 776.784 @ N/A | PET 721.819 @ N/A (Metric units: MI = megaliters, km² = square kilometers)

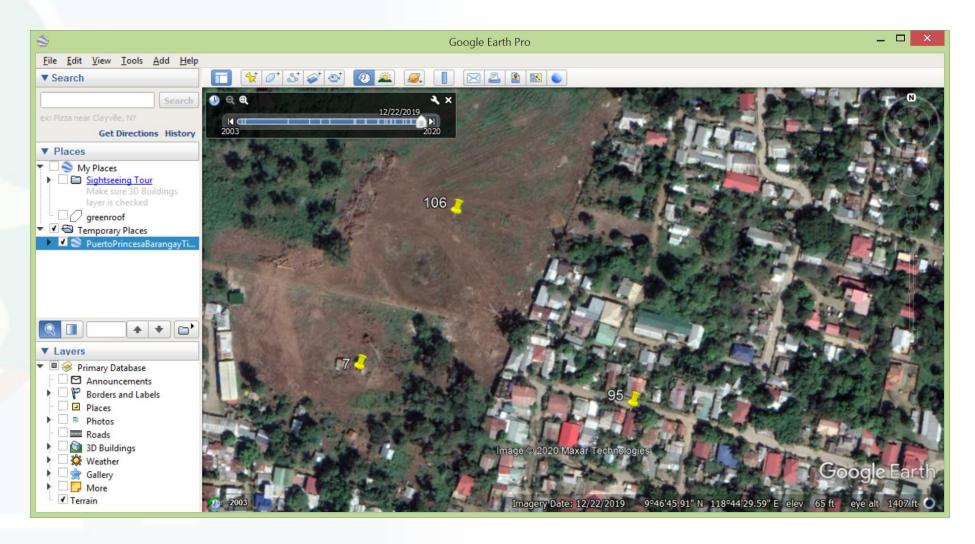
Canopy Change Over Time

- Utilize Google Earth to evaluate trends and projects with historic images
- Use results to track progress, or inform future development

Land Use	2005	2016
Tree	23.0%	23.7%
(+)		
•	32.1	33.0
(+)		
Grass	•	38.4
<i>3</i> 6.8 (-)	
Bare Ground	14.33	3.83 (-)
Water		2.16
2.67 (-	+)	
	Tree (+) Impervious (+) Grass 36.8 (-) Bare Ground Water	Tree 23.0% (+) Impervious 32.1 (+) Grass 36.8 (-) Bare Ground 4.33

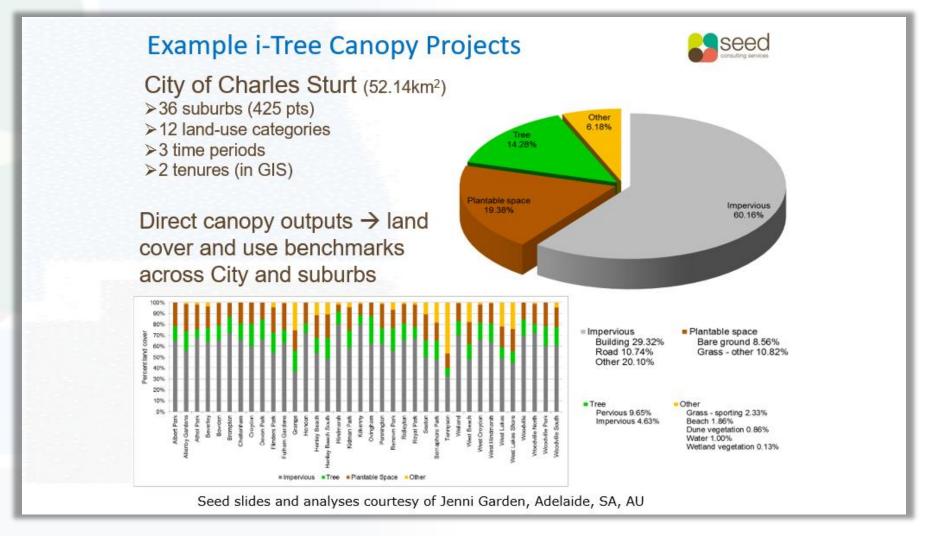


But know that Google can be tricky...


Air Pollution \$1,313,000 \$1,353,000(+)

Stormwater \$710,000

Canopy Change Over Time


Canopy Change Over Time

Tiniguiban, Puerto Princesa, Philippines

I Have My Canopy Estimates – Now What?

Data is exportable...and unbound!

I Have My Canopy Estimates – Now What?

Example i-Tree Ca

Survey revealed that while canopy cover had declined across the whole city, it had actually increased in public land through planting programs, but this increase had been outpaced by declines on private land due to urbanization

Estimates of Your Tree Benefits

More than an investment in beauty and shade, your trees work hard for you!

Prepared exclusively for: South Bend, IN Estimated Tree Cover for your City: 23.7%

Storm water runoff avoided each year by your trees:

106,111,924 gallons @ \$944,396

Carbon Dioxide absorbed each year by your trees:

25,961 tons @ \$915,276

Carbon Dioxide already stored in your trees:

798,570 tons @ \$28,153,880

Estimated Land C	over	acres				
Tree		6,326.8				
Impervious		8,809.5				
Grass		9,823.9				
Bare Earth		1,022.4				
Water		712.7				
	Total	26,695.3				

Air pollution removed each year by your trees:

	,	3 3	
		tons	@ value
	Carbon Monoxide	5.28	\$7,015
	Nitrogen Dioxide	19.90	\$8,586
The state of	Ozone	125.42	\$299,050
	Sulfur Dioxide	12.41	\$1,793
Particulate matte	r (less than 2.5 microns)	8.55	\$817,867
Particulate ma	etter (2.5 to 10 microns)	34.98	\$218,527
	Total Pollutants	206.54	\$1,352,838

Trees remove pollutants from the air.

Poor air quality is a common problem in many urban areas. It can lead to health problems, landscape damage, degraded ecosystems, and reduced

- . Carbon monoxide (CO) interferes with oxygen delivery within the human
- . Nitrogen dioxide (NO2) contributes to ozone and fine particle pollution and is linked to adverse respiratory system effects.
- . Ozone (O3) is harmful near the ground and can worsen lung diseases such as asthma, particularly in children.
- · Particulate matter (PM), or particle pollution, is a complex mixture of extremely small particles and liquid droplets that can cause serious health
- . Sulfur Dioxide (SO2) can make breathing difficult. It contributes to acid rain and can react with other compounds in the atmosphere to form visibility-

Trees absorb carbon dioxide from the air and store it as wood.

Carbon dioxide (CO₂) is a greenhouse gas that traps heat in the atmosphere.

. It enters the atmosphere through burning fossil fuels (coal, natural gas, and oil), solid waste, trees and wood products, and also as a result of certain chemical reactions (e.g., manufacture of cement).

- Enhance property values · Improve health and well-being
- · Reduce storm water runoff

- Lower summer air temperatures
 - · Provide wildlife habitat
 - · Provide aesthetic benefits

I Have My Canopy Estimates – Now What?

- What you know powers the way forward
 - > What You Have, Where You Have It
- Stormwater/Urban Heat impact → Impervious just as important as Canopy
- Results can drive conversations with communities
 - > Opportunities for input, engagement, and stewardship
 - > What do you have, where do you have it, how can you use that knowledge to impact policy and manage resources
- Strategies that can build resilience for both trees and neighborhoods

i-Tree Canopy:Estimating YourCoverage ThroughImage Analysis

Questions?

canopy.itreetools.org

i-Tree International Academy 2024 Session 2 i-Tree Eco Overview



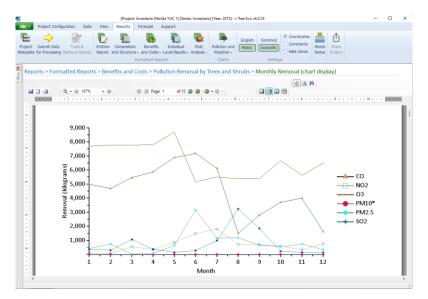
i-Tree Eco Global Availability

Whole country integrations

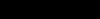
- Australia
- Canada
- Colombia
- Europe
- Mexico
- South Korea
- New Zealand
- Ukraine Japan

Over 400 Single cities integrated through i-Tree Database

i-Tree Eco: Maximum flexibility and detail


<u>Flexible</u>

- Scale individual tree to city
- Inputs
- Data capture methods
- Forecasting


Widest range of applications
Use when you have resources to
make the best use of flexibility
and detail

Detailed

- Tree measurements
- Local data selection
- Reports Over 75 structure and benefits reports
- 20+ page written report

- Non-government organizations (NGOs)
- Consulting firms
- Universities & campuses
- Parks and public gardens
- Sustainability programs
- Innovators

Palawan Daily News™

Q

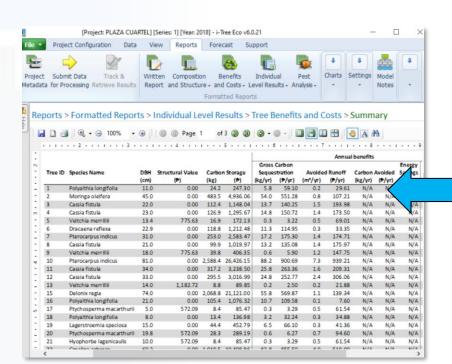
Puerto Princesa to transfer knowledge on urban forestry management to lloilo and Tagbilaran cities

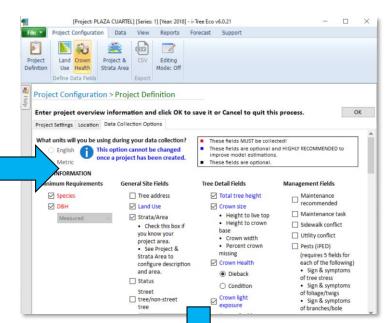
Puerto Princesa City
City Environment & Natural Resources Office

iTree Eco Application

Palawan Daily News

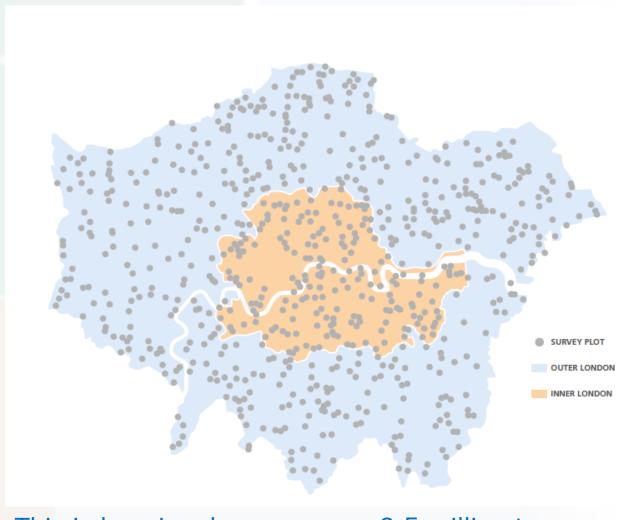
What does an i-Tree Eco project look like?


1. Project planning

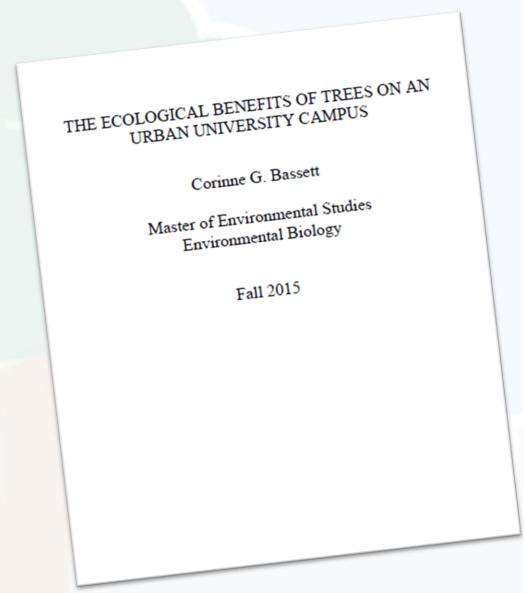

2. Project set-up and configuration

3. Data collection/Data Import

4. Processing, Results and Reporting



Flexible scale: Plot-base statistical sample



This is how London measures 8.5 million trees

https://www.itreetools.org/support/resources-overview/project-profiles/valuing-londons-urban-forest

Flexible scale: Individual tree inventory

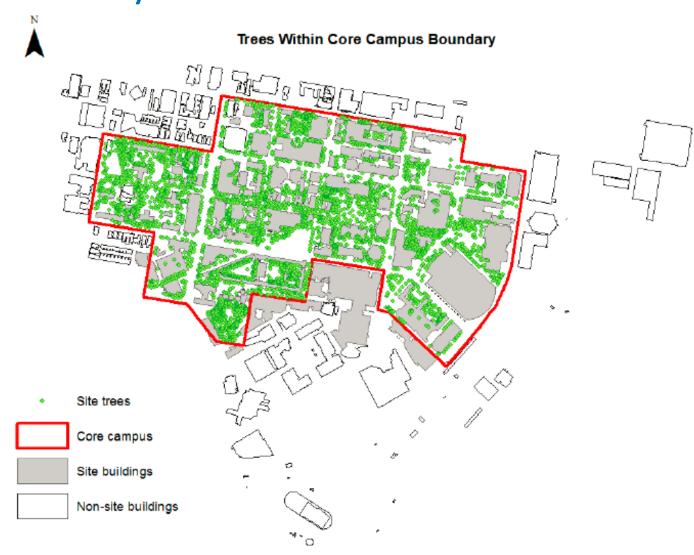
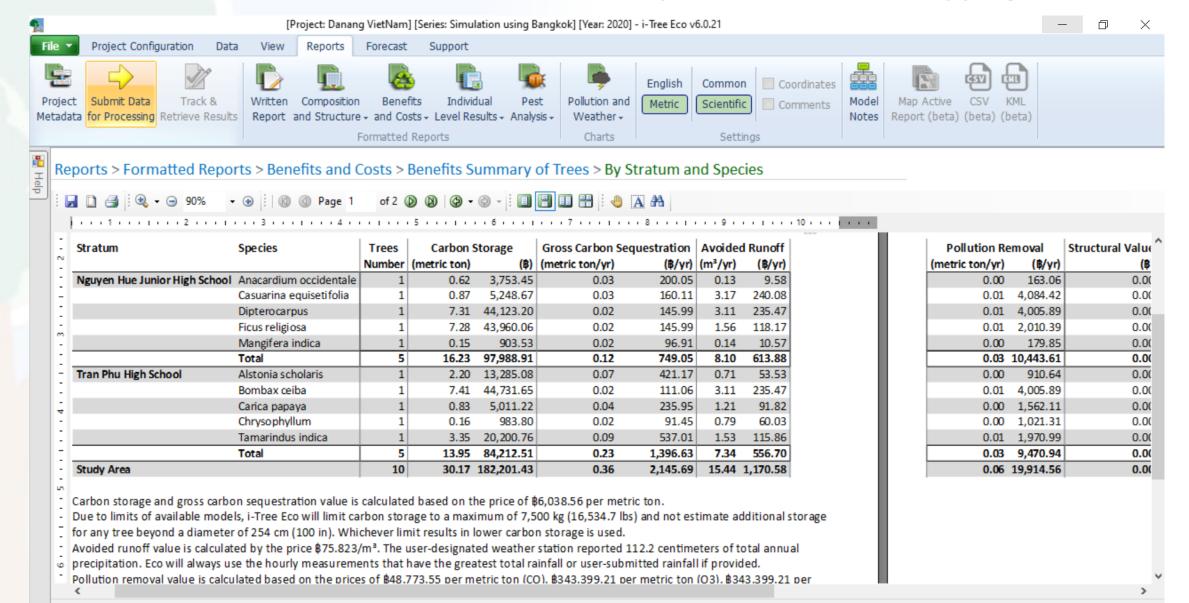
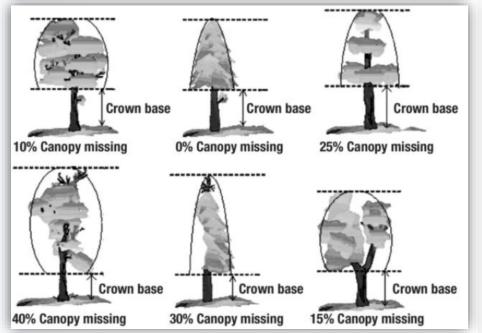



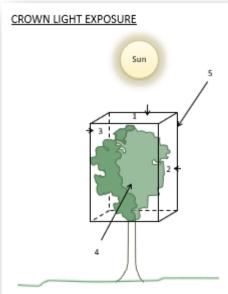
Figure 2: Core campus boundary used in USDA Forest Service study and i-Tree Eco study.

http://repository.upenn.edu/mes capstones/66/

Flexible scale stratification: Separate project area into parts

Stratification and Location Coordinate Capture for External Mapping

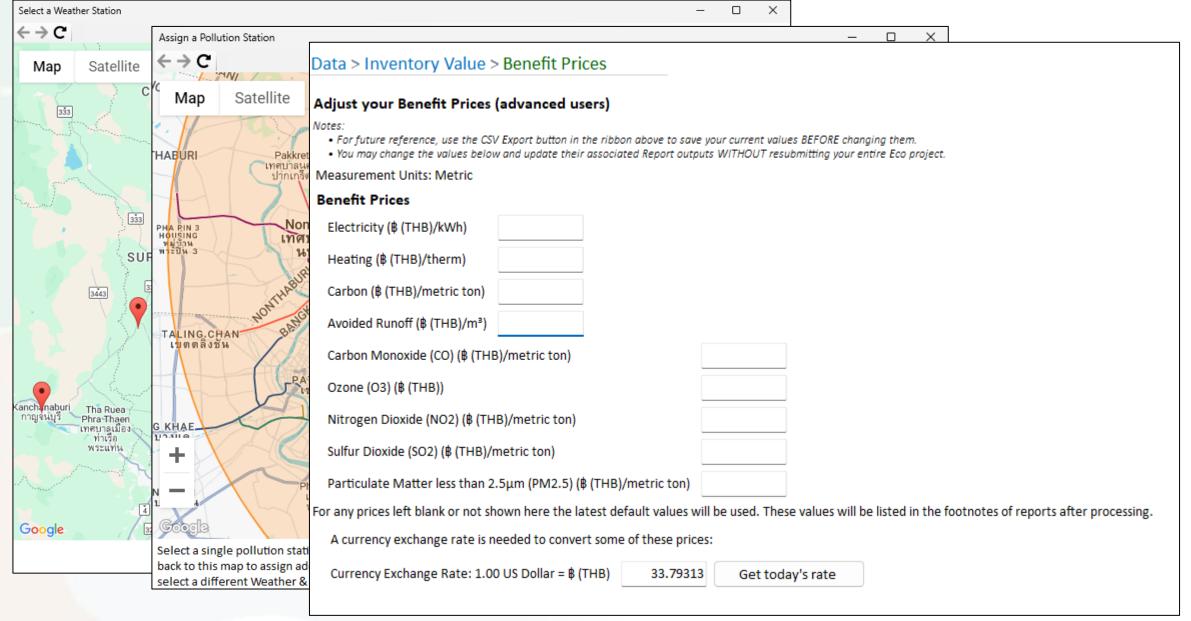

Flexible and Detailed inputs: What data will you collect?


Minimum Required Tree Data

- 1. Tree species
- Diameter at breast height (DBH)

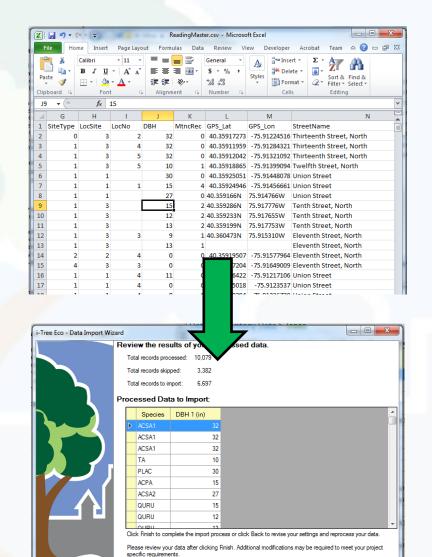
Optional but Recommended Tree Data

- 3. Total tree height
- 4. Height to live top
- 5. Height to crown base
- 6. Crown width (N-S)
- 7. Crown width (E-W)
- 8. % Crown missing
- 9. % dieback (condition)
- 10. Crown light exposure (CLE)
- 11. Land use



CLE affects tree growth rates and accounts for competition with other trees for access to light.

What units will you be using during your data collection? This option cannot be changed once a project has been created. English Metric PLOT INFORMATION Minimum Required Fields **General Fields** Percent measured Land Use Ground cover · Ground cover (also requires tree land use) Percent tree cover · Actual land use · Percent of plot · Percent of plot (required to calculate Gras Percent plantable space Percent shrub cover Plot address Shrub details Map coordinates (also requires percent shruk Latitude Species Longitude Height (required for GPS location capture and GIS Percent of area mapping) · Percent missing Reference objects Object type Direction Distance DBH TREE INFORMATION


Flexible and detailed local customization:

Weather, pollution, benefit prices

Flexible data capture

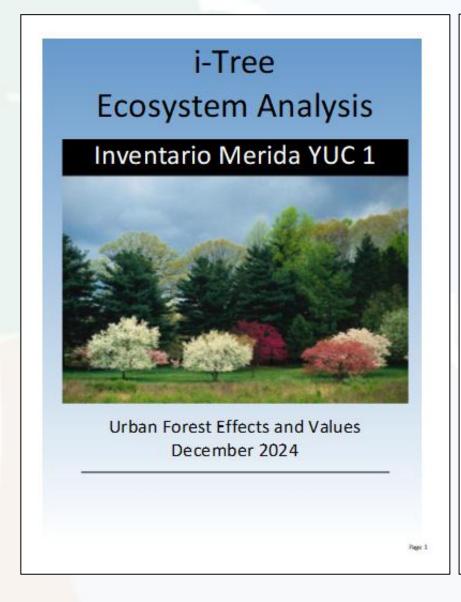
Simplified plot or inventory import

Mobile data collection with map coordinates

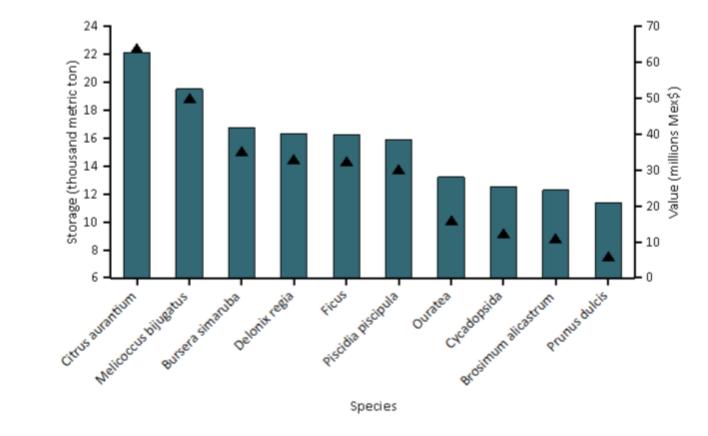
Detailed and flexible reporting

Benefits and Costs Summary of Individual Trees

Location: Merida, Merida, Yucatan, Mexico


Project: Inventario Merida YUC 1, Series: Inventario, Year: 2015

Generated: 12/11/2024



							Annual benefits												
			ı	Replacement			Gross	Gross Carbon Oxygen Energy Total Annual											
Plot ID	Tree ID	Species Name	DBH	Value	Carbon	Storage	Seque	estration	Avoide	d Runoff	Carbo	n Avoided	Pollutio	n Removal	Production	Savings	Benefits	xCoordinate	yCoordinate
			(cm)	(Mex\$)	(kg)	(Mex\$)	(kg/yr)	(Mex\$/yr)	(m³/yr)	(Mex\$/yr)	(kg/yr)	(Mex\$/yr)	(g/yr)	(Mex\$/yr)	(kg/yr)	(Mex\$/yr)	(Mex\$/yr)		
33	1	Damburneya cor iacea	19.7	11,989.73	92.9	260.48	19.5	54.82	0.1	5.69	N/A	N/A	51.6	28.24	52.1	N/A	88.75	-89.60035	20.936285
33	2	Diospyros	17.0	11,370.10	39.5	110.84	12.3	34.59	0.1	5.37	N/A	N/A	48.7	26.66	32.9	N/A	66.62	-89.600327	20.936275
33	3	Adonidia merrillii	5.5	201.22	2.6	7.16	0.5	1.48	0.0	0.18	N/A	N/A	1.6	0.89	1.4	N/A	2.55	-89.600378	20.936187
33	4	Diospyros	7.1	1,756.92	3.9	10.98	2.5	6.90	0.0	0.78	N/A	N/A	7.1	3.88	6.6	N/A	11.56	-89.600379	20.936247
35	1	Citrus aurantium	17.0	8,453.42	80.1	224.57	13.5	37.97	0.1	2.53	N/A	N/A	23.0	12.58	36.1	N/A	53.09	-89.608214	20.945798
35	2	Pouteria	22.0	15,504.04	72.6	203.67	13.6	38.15	0.4	19.84	N/A	N/A	179.9	98.54	36.3	N/A	156.53	-89.608253	20.945772
35	3	Citrus aurantium	18.0	10,574.38	93.1	261.10	17.5	49.06	0.1	3.81	N/A	N/A	34.6	18.93	46.6	N/A	71.79	-89.608335	20.945749
35	4	Citrus aurantium	15.5	7,022.30	85.1	238.84	6.0	16.91	0.1	4.28	N/A	N/A	38.8	21.26	16.1	N/A	42.45	-89.608299	20.945691
36	1	Chrysophy llum cainito	14.0	8,856.50	27.0	75.82	3.0	8.33	0.2	8.51	N/A	N/A	77.2	42.27	7.9	N/A	59.11	-89.597901	20.949162
36	2	Citrus aurantium	7.5	2,046.41	11.4	32.01	4.9	13.82	0.0	0.61	N/A	N/A	5.5	3.01	13.1	N/A	17.44	-89.597993	20.948989
38	2	Bursera simaruba	21.2	8,877.68	68.6	192.53	8.9	24.86	0.2	8.89	N/A	N/A	80.7	44.18	23.6	N/A	77.93	-89.603862	20.925089
38	3	Delonix regia	24.1	7,676.97	95.8	268.72	6.9	19.29	0.0	1.14	N/A	N/A	10.4	5.67	18.3	N/A	26.10	-89.603879	20.92603
38	4	Syagrus romanzoffiana	34.0	2,805.71	28.8	80.72	0.6	1.78	0.0	0.96	N/A	N/A	8.7	4.75	1.7	N/A	7.49	-89.603845	20.099507
38	5	Delonix regia	36.0	6,333.57	254.0	712.59	5.4	15.23	0.1	2.80	N/A	N/A	25.4	13.93	14.5	N/A	31.96	-89.603866	20.925189
38	6	Beaucarnea	8.9	1,275.68	11.5	32.38	1.3	3.61	0.0	0.54	N/A	N/A	4.9	2.67	3.4	N/A	6.81	-89.603845	20.909507
38	63	Ficus	33.0	32,933.53	249.0	698.31	26.1	73.16	1.0	46.80	N/A	N/A	424.4	232.47	69.6	N/A	352.44	-89.603851	20.924954
40	24	Citrus aurantium	15.0	10,733.46	59.1	165.84	16.7	46.72	0.1	3.10	N/A	N/A	28.1	15.38	44.4	N/A	65.20	-89.571157	20.955795
40	25	Ouratea	18.4	6,810.61	111.3	312.33	12.7	35.60	0.0	1.15	N/A	N/A	10.4	5.72	33.8	N/A	42.48	-89.571281	20.955558

Detailed and flexible reporting

Trees in Inventario Merida YUC 1 are estimated to store 249000 metric tons of carbon (Mex\$699 million). Of the species sampled, Citrus aurantium stores and sequesters the most carbon (approximately 8.96% of the total carbon stored and 14.1% of all sequestered carbon.)

Detailed and flexible reporting: More options and results

Additional ecosystem services

- UV impacts
- Allergy/Pollen
- Food
- Leaf nutrients
- Wood products

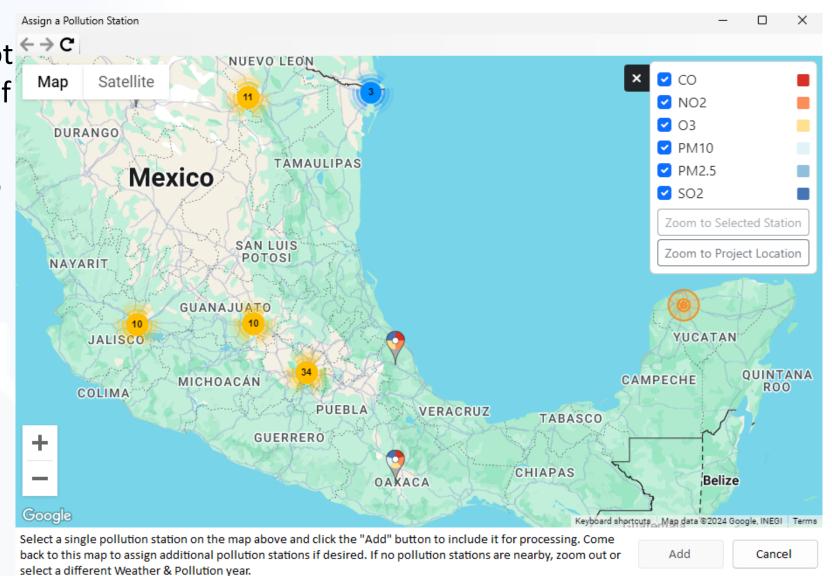
Replacement value

Management information

- Tree health
- Relative performance index
- Infrastructure conflicts
- (3) customizable fields

Cost benefit analysis

		Crown Health							
Species	Excellent	Good	Fair	Poor	Critical	Dying	Dead	RPI	# of Trees
	(%)	(%)	(%)	(%)	(%)	(%)	(%)		
Acacia	1.1	7.1	12.4	26.9	16.9	26.2	9.	0.70	89,650
Acrocomia	0.0	50.0	50.0	0.0	0.0	0.0	0.0	1.42	1,691
Acrocomia aculeata	40.0	60.0	0.0	0.0	0.0	0.0	0.0	1.55	4,227
Adonidia merrillii	39.1	30.3	11.3	16.3	0.0	0.0	3.1	1.39	30,614
Albizia	0.0	13.1	86.9	0.0	0.0	0.0	0.0	1.31	6,461
Albizia saman	22.8	0.0	43.7	26.9	6.6	0.0	0.0	1.28	14,216
Annona	2.2	8.1	20.1	29.7	25.3	14.6	0.0	0.91	45,406
Annona muricata	0.0	26.4	0.0	48.7	24.8	0.0	0.0	1.01	7,541
Annona reticulata	0.0	7.5	37.0	24.5	12.6	18.5	0.0	0.95	15,387
Annona squamosa	0.0	0.0	82.6	17.4	0.0	0.0	0.0	1.24	6,588
Araucaria	0.0	0.0	100.0	0.0	0.0	0.0	0.0	1.22	947
Azadirachta	0.0	33.3	66.7	0.0	0.0	0.0	0.0	1.38	2,536
Azadirachta indica	18.6	15.2	18.6	28.9	18.6	0.0	0.0	1 19	6,163
Bauhinia variegata	0.0	54.2	0.0	45.8	0.0	0.0	0.0	1.24	1,847
Beaucarnea	61.1	11.6	11.4	4.1	3.5	8.3	0.0	1.39	24,380
Beaucarnea recurvata	0.0	100.0	0.0	0.0	0.0	0.0	0.0	1.46	1,148
Bougainvillea	21.1	0.0	22.6	0.0	37.6	0.0	18.8	0.83	4,498
Brosimum alicastrum	10.2	27.1	20.2	32.8	0.0	3.0	6.7	1.19	31,115
Brugmansia	26.3	26.3	47.5	0.0	0.0	0.0	0.0	1.43	3,563
Bursera simaruba	5.8	6.9	9.7	10.2	17.6	47.4	2.4	0.60	152,928
Byrsonima	0.0	30.2	30.7	7.5	14.9	7.5	9.1	1.04	12,552
Caesalpinia	2.3	7.4	9.9	38.3	18.4	17.9	5.7	0.80	49,558
Caesalpinia pulcherrima	50.0	0.0	50.0	0.0	0.0	0.0	0.0	1.40	1,894
Carica papaya	15.0	32.5	44.7	0.0	3.9	3.9	0.0	1.33	24,486


i-Tree Eco: Advantages

- Local modeling uses local weather, pollution and location characteristics for modeling
- Dynamic model constantly improved
- Flexible data collection and project design options
- Data import is an easy way to assess existing tree inventory data
- Options to improve the model. e.g. users can submit new species, hourly rainfall data, biomass equations

i-Tree Eco: Limitations

- Local data limitations May not be available or representative of conditions
- Science limitations Limited to species models and data we have
- Software challenges Eco can be challenging to learn
- Accuracy depends on data –
 Most accurate results require
 more measurements

Keys to success with i-Tree Eco

- Understand tool advantages, limitations, and options available
- Define your objectives
- Evaluate your resources (time, equipment, money, technical capacity, potential collaborators)
- Consider pilot projects
 - > used to learn
 - show potential
 - > justify scaling up projects

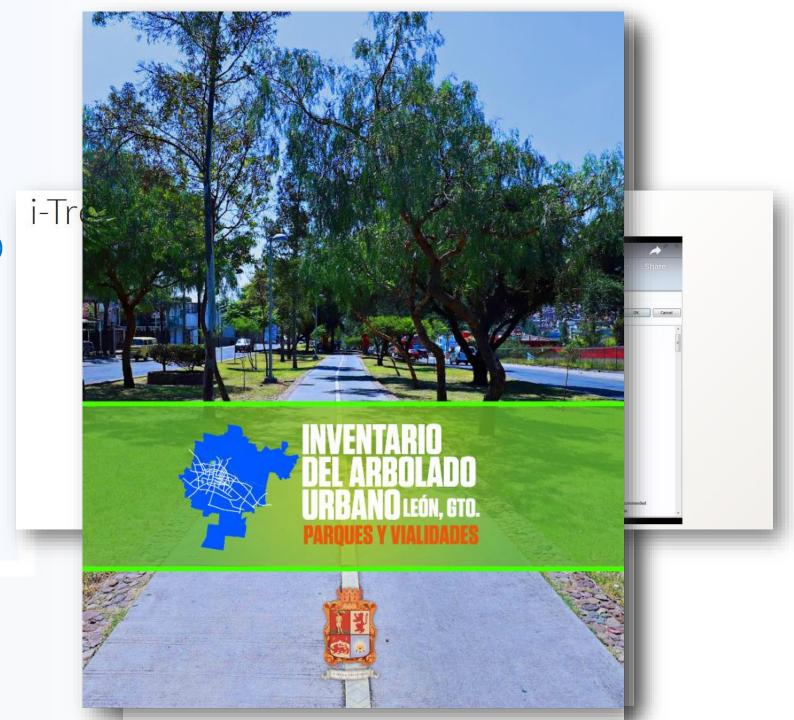
Connect to things that matter to people

Learn More...

... About how the models work

Understanding i-Tree

... About Field Data collection


- Cheat sheets (German, French)
- > Field guide

... About using the software

- User's Manual
- Videos (YouTube Channel)
- Documentation by language

... About using results

- Foreign language reports
- US reports
- Beyond the written report

