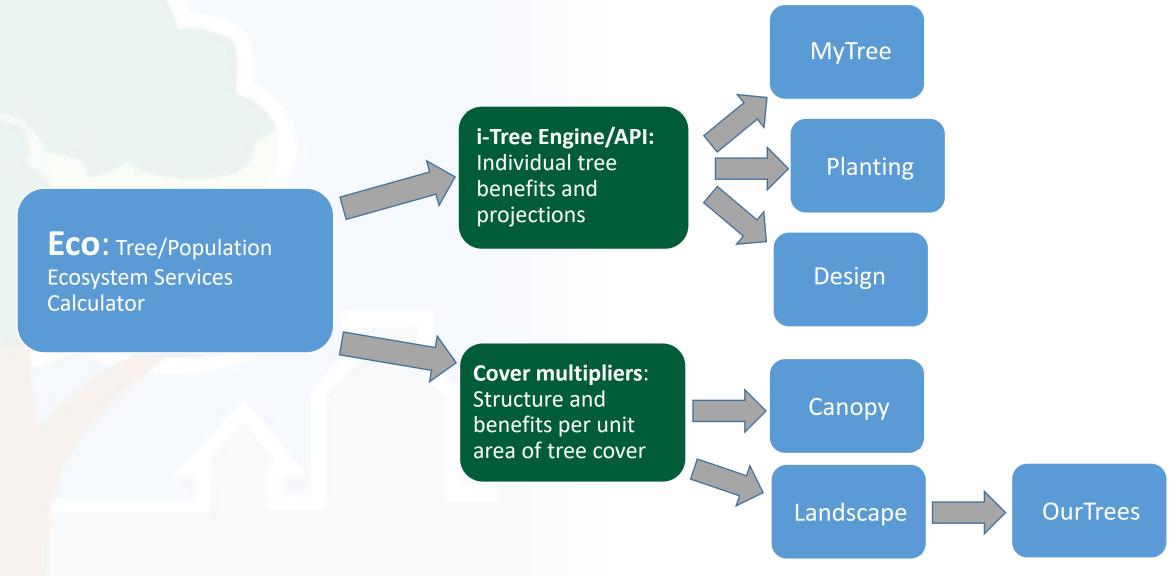
Plan for today

- 1. Setting up your first project
- 2. Key decisions
- 3. i-Tree Eco Results
- 4. Is i-Tree Eco right for you?



i-Tree Tool Relationships

The i-Tree Eco Framework

i-Tree

Structure

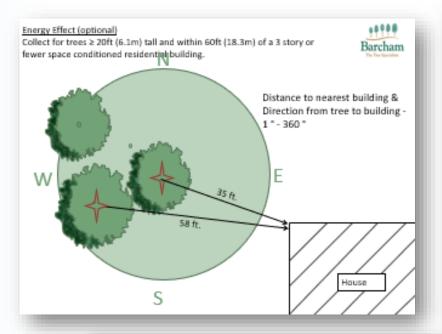
- Summary of field measurements
- Leaf area
- Condition
- Species distribution
- Diameter distribution

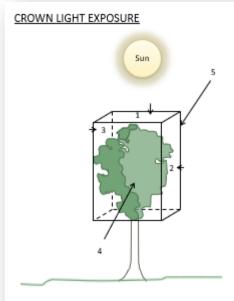
Function

- Air quality improvement
- Energy effects
- Carbon storage & sequestration
- Hydrology effects
- Shade ultraviolet effects (UV)
- Foodscape characteristics
- Wildlife suitability avian focus
- Volatile organic compounds
- Leaf nutrients, wood production, and more

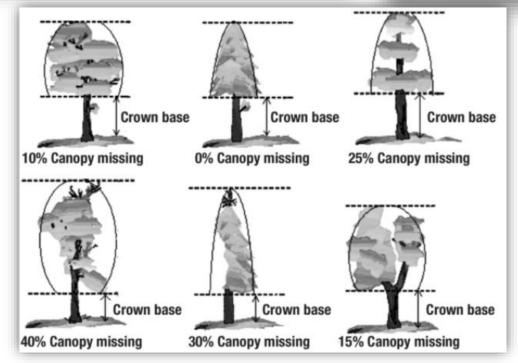
Value

- Monetary value
- Equivalent values
- Health outcomes
- Cost Benefit analysis
- Summaries for management


Key Decision 1: What data will you collect?


Minimum Required Tree Data

- 1. Tree species
- Diameter at breast height (DBH)


Optional but Recommended Tree Data

- 3. Total tree height
- 4. Height to live top
- 5. Height to crown base
- 6. Crown width (N-S)
- 7. Crown width (E-W)
- 8. % Crown missing
- 9. % dieback (condition)
- 10. Crown light exposure (CLE)
- 11. Land use

CLE affects tree growth rates and accounts for competition with other trees for access to light.

From field data to results

Understanding i-Tree: 2021 Summary of Programs and Methods

David J. Nowak

Data

Data

Plot

Page 22

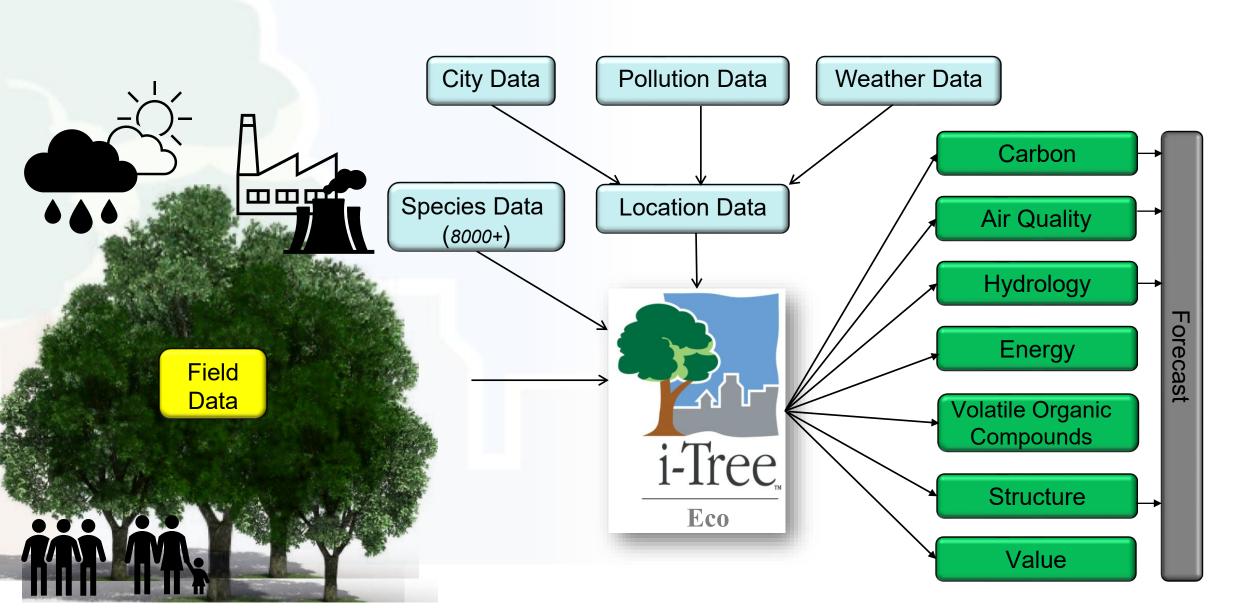
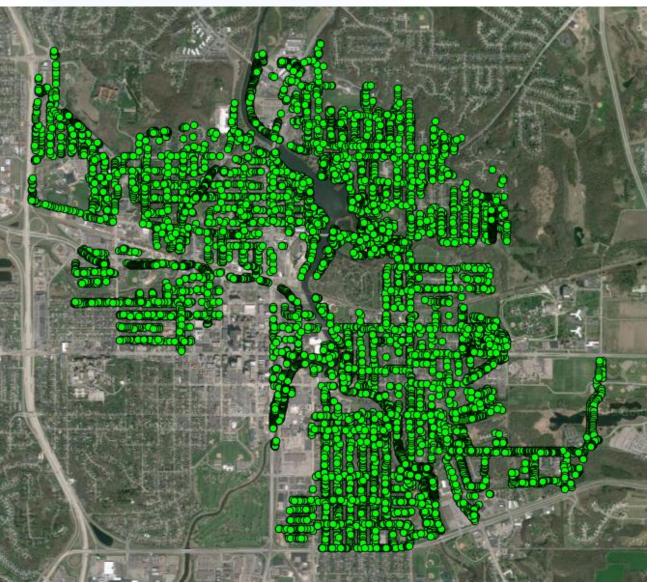

https://www.fs.usda.gov/research/treesearch/63636

Table 2.—Summary of which directly field-measured characteristics are used to estimate derived variables and ecosystem services. D= directly used; l= indirectly used; C= conditionally used.

variables and ecosystem services. D= directly used; l= indirectly used; C= conditionally used.													
	DERIV VARIA		ECOSYSTEM SERVICES										
DIRECT MEASURES	Leaf Area	Leaf Biomass	Carbon Storage	Gross Carbon Sequestration	Net Carbon Sequestration	Energy Effects	Air Pollution Removal	Avoided Runoff	Transpiration	VOC Emissions	Compensatory Value	Wildlife Suitability	UV Effects
Species	D	D	D	D	D	D	-1	-1	- 1	D	D		
Diameter at breast height (d.b.h.)			D	D	D						D	D	
Total height	D	D	С	С	С	D	-1	_	-1	1		D	
Crown base height	D	D	С				-1	_	-1	_			
Crown width	D	D	С				-1	1	- 1	- 1			
Crown light exposure			С	D	D								
Percent crown missing	D	D	С	С	С	D	- 1	1	1	1			
Crown health (condition/ dieback)				D	D						D	D	
Field land use				D							D	D	
Distance to building						D							
Direction to building						D							
Percent tree cover						D	D	D				D	D
Percent shrub cover							D					D	
Percent building cover						D							
Ground cover composition							-1					D	


i-Tree model basics: Inventory data tree benefits?

Let's set-up an i-Tree Eco project

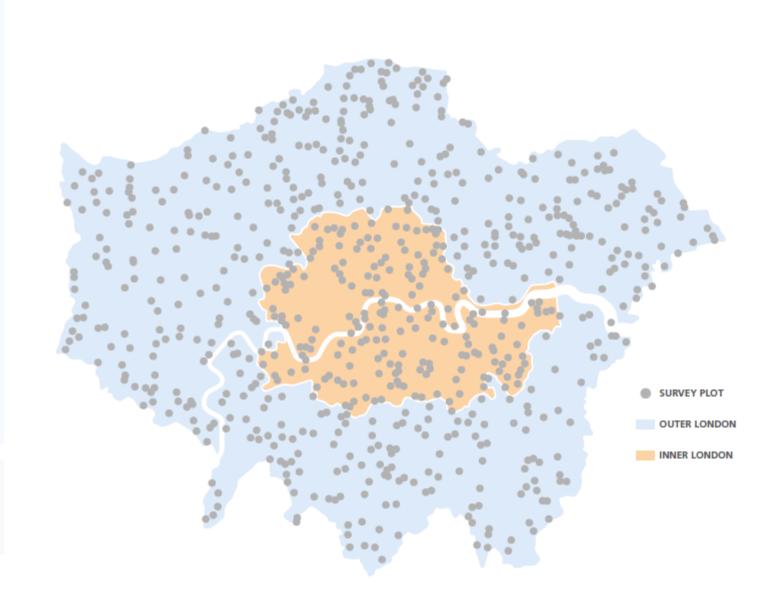
Rochester, MN Street Tree Inventory

Key Decision 2: Sample or complete inventory?

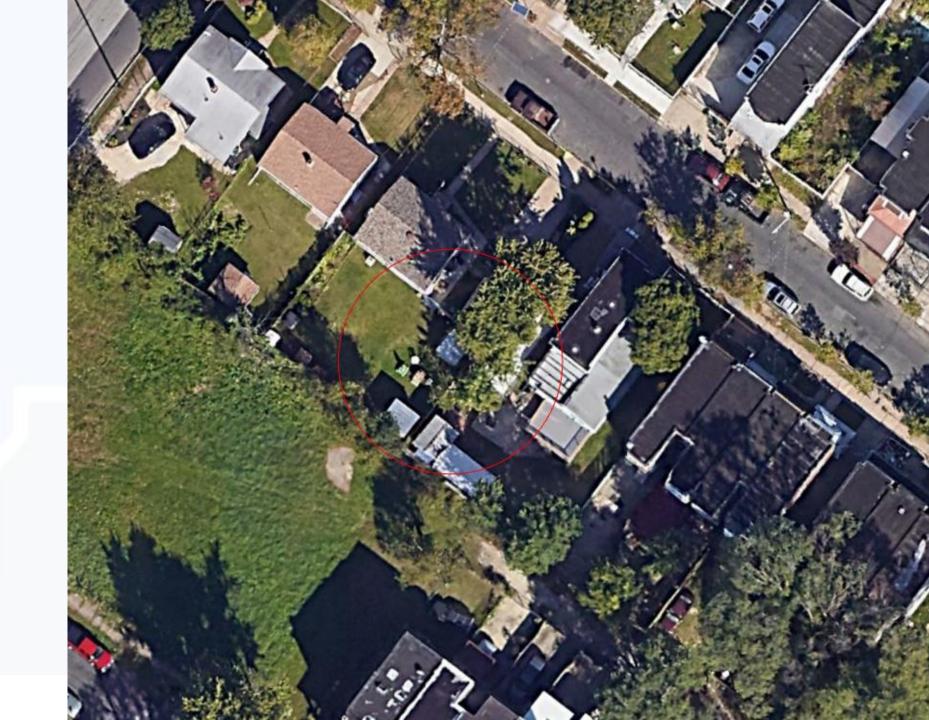
Random sample of plots

- City
- County
- Regional or watershed
- Large scale or forested areas

Complete inventory


- Parks
- Campuses
- Residential properties
- Specimen or single trees
- Only trees of interest

What is a sample and why would you do it?

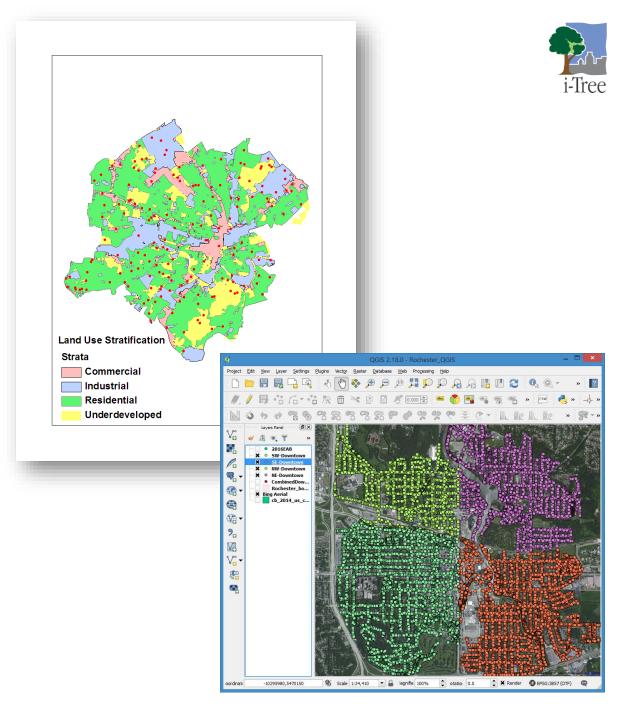


- A small subset of the items you are interested in
- Easier than measuring the whole thing
- For statistical reasons must be random
- We can estimate how well our sample represents the whole population
- This is how London measures 8.5 million trees

What is a plot?

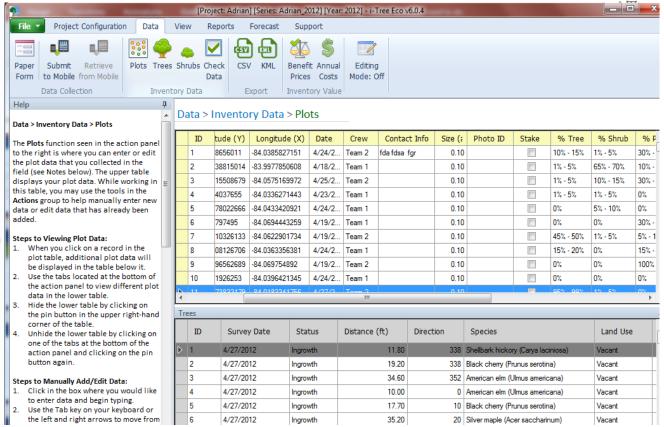
- By default 37.2 ft in radius, 1/10th acre in area.
- Plot size can be changed
- Tradeoffs between plot size and the number you can measure

Sample Plots vs. Complete Inventory



Characteristic	Sample	Complete			
Recommended area	City or larger	Any			
Number of plots	200 or more	not applicable			
Typical number of trees	>500	Any			
Access	Numerous permissions usually required	Often no permission required			
Accuracy	Some loss of accuracy due to sampling error	No sampling error, all trees of interest measured			
Results	Estimates expanded to whole area of interest	Estimates only for measured trees			

Key Decision 3: Will you stratify?

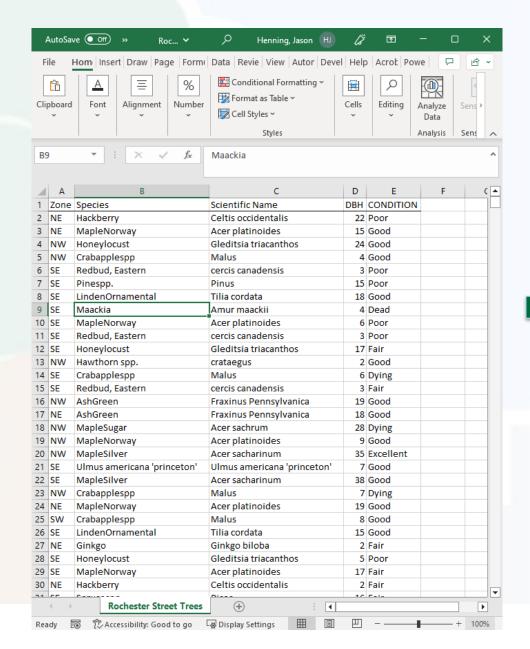

Dividing area of interest into categories

- Can be performed by any categories of interest (land use, ownership, political, watershed, etc.)
- Summaries generated by categories of interest
- Perform pre- or post- measurement (sample must be random)
- Can improve statistical accuracy
- Plots or complete inventory

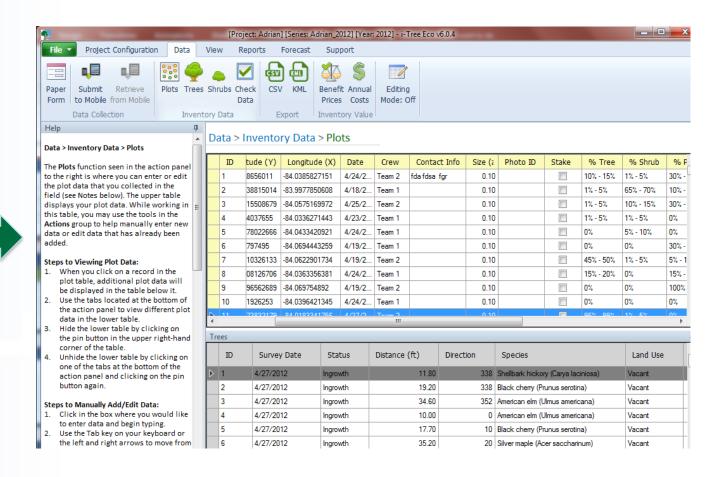
Key Decision 4: How will you enter data? manual, mobile, or import

Manual data entry: Collect on paper then directly enter in the i-Tree Eco interface

Data entry: mobile


Web-enabled mobile device

- Measure and enter your selected field variables
- Regularly submit data to Davey servers
- Retrieve data into your i-Tree Eco Project



Data import

Data entry: mobile, manual, or import

- Useful for citizen science
- Multiple people can do data entry
- Need device, safety, battery
- Tedious for plots with lots of trees

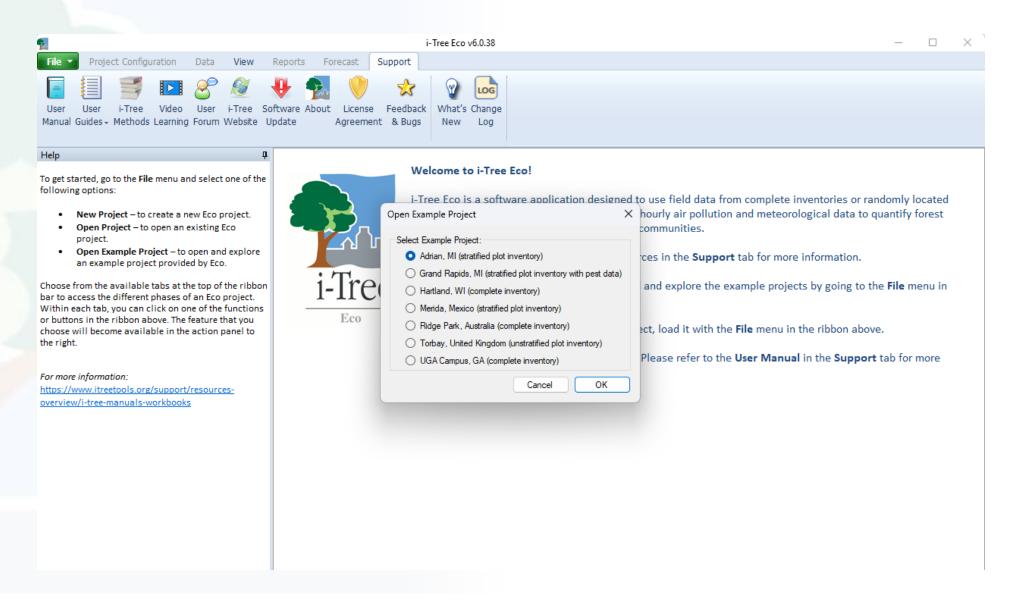
Manual

- Use paper for permanent record
- Fewer potential issues
- Single user
- Slow

Import

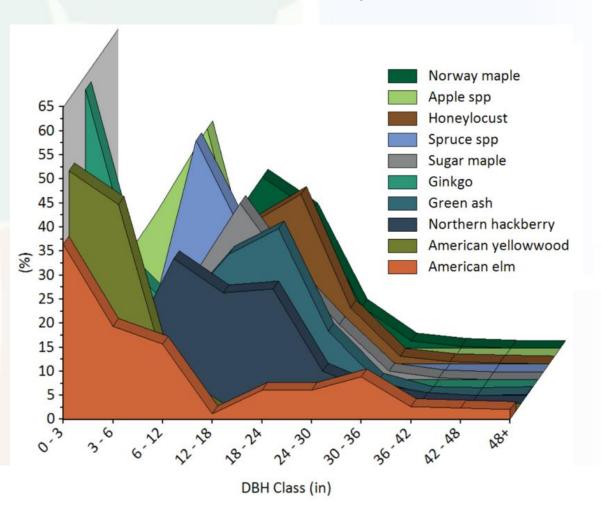
- Ultimate flexibility
- Add value to existing inventories
- Quick
- Now works for samples or complete inventory

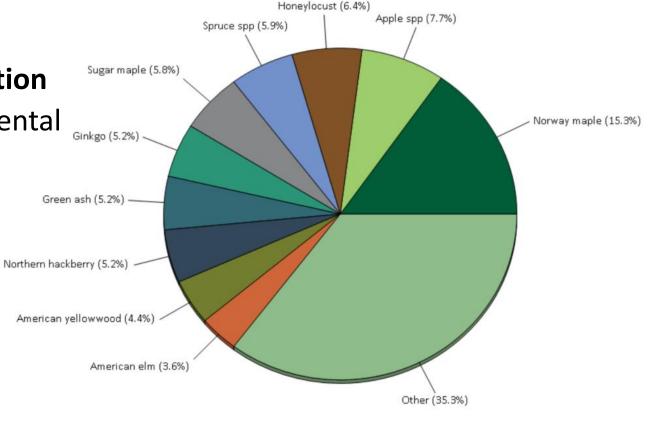
Let's get some data into i-Tree Eco


Mobile data entry

https://bit.ly/i-TreeAcademy

Explore i-Tree Eco with Example Projects




i-Tree Eco structure results

Species Diversity/Composition

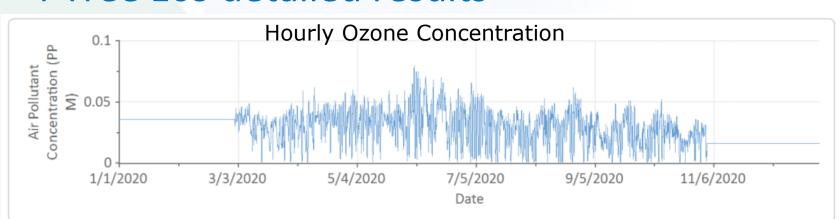
Diversity reduces environmental

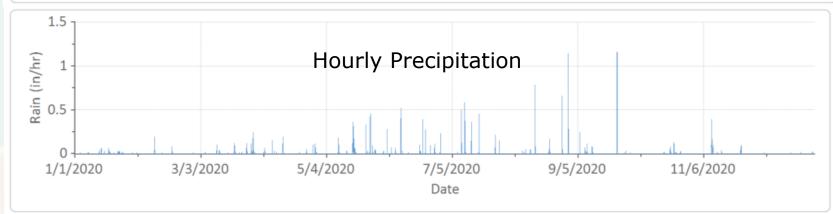
threats, increases resilience

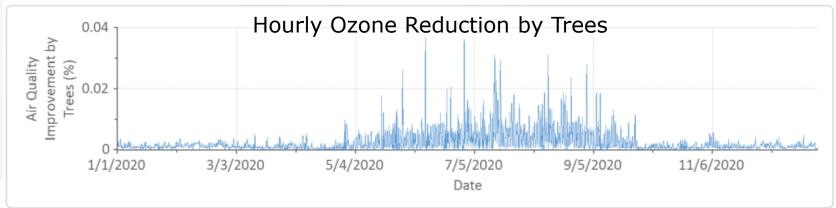
Size/Age Class Distribution

Distribution of age informs sustainability

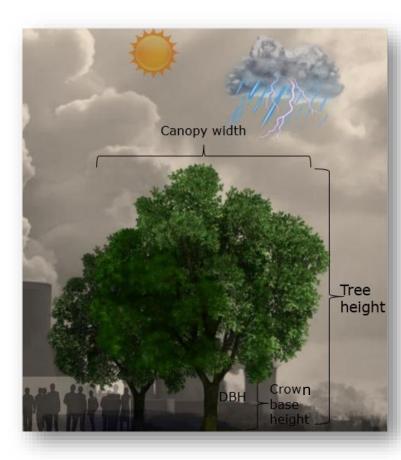
i-Tree Eco management focused results


i Troo


Appendix VI. Potential Risk of Pests


Fifty-three insects and diseases were analyzed to quantify their potential impact on the urban forest.

Code	Scientific Name	Common Name	Trees at Risk	Value
			(#)	(\$ thousands)
AL	Phyllocnistis populiella	Aspen Leafminer	30	8.94
ALB	Anoplophora glabripennis	Asian Longhorned Beetle	5,080	6,037.13
ARCA	Neodothiora populina	Aspen Running Canker	0	0.00
ARD	Armillaria spp.	Armillaria Root Disease	4	2.86
BBD	Neonectria faginata	Beech Bark Disease	0	0.00
ВС	Sirococcus clavigignenti juglandacearum	Butternut Canker	145	273.64
BLD	Litylenchus crenatae mccannii	Beech Leaf Disease	0	0.00
BM	Euproctis chrysorrhoea	Browntail Moth	891	335.73
ВОВ	Tubakia iowensis	Bur Oak Blight	105	291.08
BSRD	Leptographium wageneri	Black Stain Root Disease	4	2.86
BWA	Adelges piceae	Balsam Woolly Adelgid	1	0.25
СВ	Cryphonectria parasitica	Chestnut Blight	0	0.00
DA	Discula destructiva	Dogwood Anthracnose	0	0.00


i-Tree Eco detailed results

i-Tree Eco health

Air Quality Health Impacts and Values by Trees

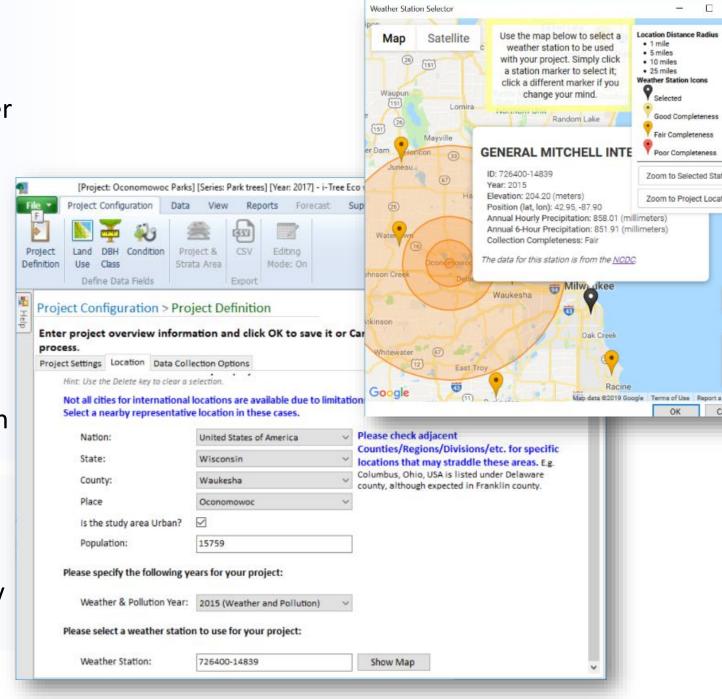
Location: Rochester, Olmsted, Minnesota, United States of America

Project: Rochester Street Trees, Series: 1, Year: 2023

Generated: 4/18/2023

	NO2	03	PM2.5	SO2	All
Health Outcome	(\$/yr)	(\$/yr)	(\$/yr)	(\$/yr)	(\$/yr)
Acute Bronchitis			0.05		0.05
Acute Myocardial			13.31		13.31
Acute Respiratory	0.99	77.97	28.87	0.17	108
Asthma Exacerbation	39.16		19.05	3.69	61.9
Chronic Bronchitis			72.41		72.41
Emergency Room Visits	0.10	0.13	0.10	0.05	0.38
Hospital Admissions	21.86	31.31		4.49	57.66
Hospital Admissions,			3.16		3.16
Hospital Admissions,			2.24		2.24
Lower Respiratory			0.34		0.34
Mortality		3153.14	5791.25		8944.39
School Loss Days		38.07			38.07
Upper Respiratory			0.25		0.25
Work Loss Days			8.95		8.95
Total	62.10	3300.62	5939.98	8.41	9311.11

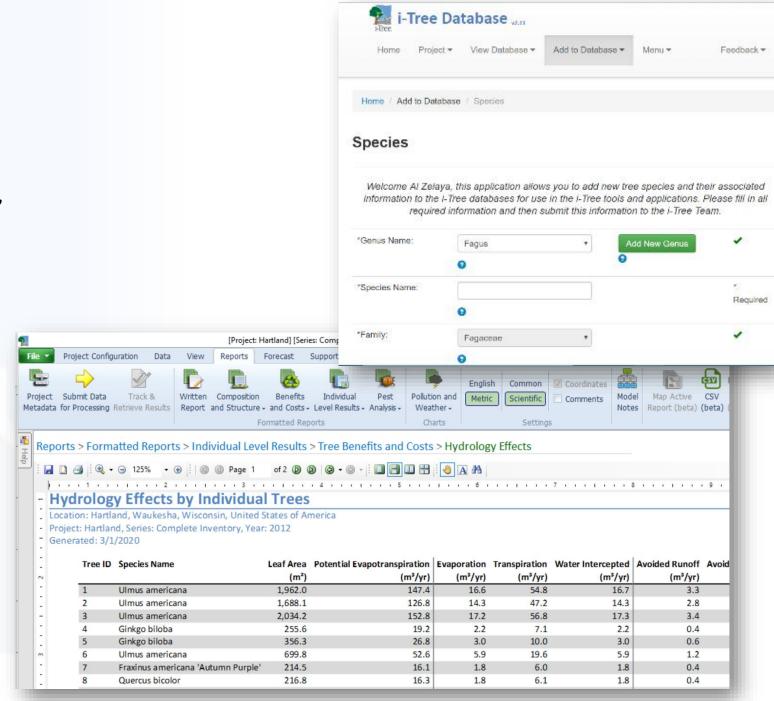
Is i-Tree Eco the right tool for you?


i-Tree Eco: Advantages

 Local Modeling – Eco uses available local hourly weather & pollution data and other local characteristics for modeling

 Dynamic model – constantly improved with new science, new international locations, new reports and functions

 Flexible data collection and project design maximize user base.


 The Eco import option is a great way to assess existing tree inventory data quickly

i-Tree Eco: Advantages

Options to improve the model.
e.g. users can submit new species,
hourly rainfall data, biomass
equations (i-Tree Database)

 Flexible results – Eco reports by species, strata, and individual tree to help with strategic decision making.

Use i-Tree Eco ...

... when you have existing data.

... when you have resources for a large-scale project.

... if you can make good use of the wealth of results.

... to support management.

... when interested in a plotbased sample.

... for centralized project management.

Try another i-Tree tool ...

... when working with students or the public.

... to show that trees have benefits.

... when time is limited.

... to start conversations on trees and tree benefits.

... when you are interested in canopy cover.

... for priority planning.

Additional resources - project planning

Project Management

i-Tree

<u>Idaho Treasure Valley i-Tree Eco Project Management Report</u> - This document developed by David Stephenson, Idaho Department of Lands Community Forestry Program, provides suggestions, methods, tips and tools to help future Eco project managers.

<u>Eco Project Cost Estimation</u> - This document, developed by Eric Kuehler from Urban Forestry South, offers a cost estimate for an Eco project. Note - Numerous factors can affect project cost and this is provided only as a general guideline.

<u>Eco Project Time Estimation</u> - This document, developed by Eric Kuehler from Urban Forestry South, provides time estimations for planning and conducting an Eco project.

<u>Eco Project Timeline</u> - This document, developed by Eric Kuehler from Urban Forestry South, is an example of a Eco project time line for a county assessment.

Eco Project Equipment List - This is an example of equipment options for a typical i-Tree Eco project.

<u>Eco Report Explanation Brief</u> - This document, developed by Eric Kuehler, USFS Urban Forestry South, and Francisco Escobedo, University of Florida, provides a brief explanation of and uses for the i-Tree Eco reports.

<u>City of Milwaukee - Notification Letter - This is an example on an access notification letter sent to residents provided courtesy of the City of Milwaukee.</u>

<u>City of Milwaukee - Access Response Card</u> - This is an example on an Eco plot access response card sent to residents provided courtesy of the City of Milwaukee.

Data Collection Guides

<u>Eco Field Data Cheat Sheet (1 page field resource) updated 03.28.2021</u> - (16MB pdf) This two-page guide is great to have in the field for inexperienced crews or when you need a reminder of how to collect Eco data and measurements for a given tree. This document was developed by Naomi Zurcher of Arbor Aegis in support of the Swiss i-Tree Eco project.

<u>Casey Trees UFORE Management Guide</u> - This guide, which was developed by Casey Trees in Washington D.C., provides detailed guidelines for planning, managing and executing an i-Tree Eco project.

<u>Cascade Land Conservany (CLC) Integrated Forest Assessment Report</u> - This document was developed by CLC in Seattle, WA, and describes outreach efforts and guidelines for planning and managing Eco plot access issues.

Eco plot descriptions Powerpoint (PDF) - This is a PDF file of a PowerPoint used for Eco plot training developed courtesy of Keith Sacre from Treeconomics

<u>Eco Data Explanation Sheet</u> - Brief description of Eco sample project plot & tree data collection options.

Additional resources - videos

Eco Basics, Project Creation, and External Import Steps

Eco v6 highlights and overview - 5 min. - video highlights features and options in the i-Tree Eco v6 application.

<u>Importing external inventory data into Eco v6 - 8 min.</u> - Instructions for setting up an Eco v6 inventory project and importing in external data.

Eco v6 sample project creation - 8 min. - Creating a plot-based sample project using the i-Tree Eco v6 application.

Eco v6 complete inventory project creation - 11 min. - Creating a complete inventory project using the i-Tree Eco v6 application.

Eco Plot Establishment

Basic Eco sample plot establishment - 2 min. - How to lay out a simple 1/10th acre plot for an Eco sample project.

<u>Eco wooded plot establishment - 3 min.</u> - How to lay out an Eco sample plot partially in a wooded area.

Measuring plot reference object - 2 min. - How to measure a reference or permanent object from an established eco plot center.

Eco Tree Measurements

<u>i-Tree Eco - Basic tree height measurements - 9 min.</u> - How to measure total tree height, height to live top, and height to crown base <u>Simple tree DBH measurement - 2 min.</u> - How to measure a single stem tree (DBH) diameter at breast height.

CLE - Crown Light Exposure - 3 min. - How to determine the crown light exposure (CLE) for a tree during Eco field data collection

Using the i-Tree Eco v6 Mobile Data Collection (MDC) system

Mobile Data Collection part 1 - How To Submit A Project To A Mobile Device - 5 min. - In this video there are instructions concerning how to submit i-Tree Eco inventory and plot-based projects to the mobile data collector.

Mobile Data Collection part 2 - How To Collect Data With The Mobile Data Collector - 8 min. - In this video there are instructions concerning how to collect data with the mobile data collector for i-Tree Eco inventory and plot-based projects.

Mobile Data Collection part 3 - Retrieving Data - 3 min. - In this video there are instructions concerning how to retrieve data that has been collected using the mobile data collector for i-Tree Eco inventory and plot-based projects.

Mobile Data Collection Project Management Tips - 3 min. - This video is supplemental to the three-part series concerning the mobile data collector. In this video there are examples of, and solutions to, the sticking points we are aware of users encountering while using the mobile data collector.

Mobile Data Collection: Recording coordinates for plot center or tree locations- 3 min. - This video demonstrates using the Eco v6 Mobile Data Collection (MDC) system options for recording plot center or tree locations.