

Free Tools to Assess Ecosystem Services and Values of Trees

i-Tree

David J. Nowak

USDA Forest Service, Northern Research Station

Syracuse, NY

What is i-Tree?

-Tree

i-Tree Quantifies Tree and Forest Resources

Structure

 Number of Trees, species distribution, canopy cover, etc.

Functions / Ecosystem Services

- Energy
- Air pollution
- Carbon
- Biogenic VOC emissions

Management needs

- 🕈 🛛 Pest risk
- Tree health
- Exotic/invasive spp.

\$ Value

Arbor Day Foundation

Stormwater Cooling Air Quality CO2

Heating

Breakdown of your tree's benefits

Northern pin oak Quercus ellipsoidalis

This 21 inch Northern pin oak provides overall benefits of: \$163 every year.

While some functional benefits of trees are well documented, others are difficult to quantify (e.g., human social and communal health). Trees' specific geography, climate, and interactions with humans and infrastructure is highly variable and makes precise calculations that much more difficult. Given these complexities, the results presented here should be considered initial approximations-a general accounting of the benefits produced by urban street-side plantings.

Benefits of trees do not account for the costs associated with trees' long-term care and maintenance.

If this tree is cared for and grows to 26 inches, it will provide \$195 in annual benefits.

Easily estimates ecosystem services of trees in your yard using Google **Maps and i-Tree**

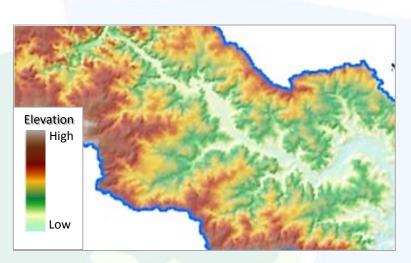
Arbor Day Foundation

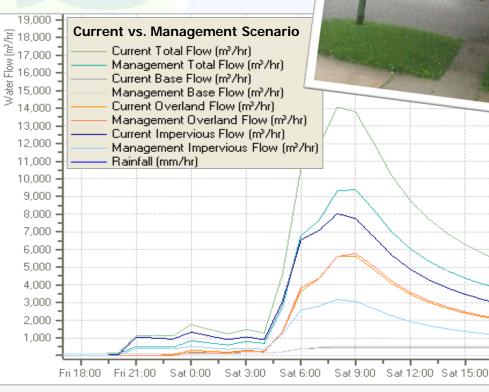
i-Tree Canopy	Brunswick NorthCote	
Browse to your project area boundary GIS file. The file must be in ESRI Shapefileformat and in lat/long coordinates.	ngton	
Contract Load ESRI Shapefile ? Or Load Sample Project	ngton Abbotsford	
Configure the cover classes for your survey.	Vitor Rd 32 West	
Configure Survey > ?	Melbourne Melbourne Richmond	
Three Begin i-Tree Canopy Survey > ?	Cremorne Burnley	
Been here before?	Port South Kilda Road Melbourne Melbourne Dert Park South Yarra	: 77.
Already started an i-Tree Canopy survey? Load it here and resume your work.	sons	i-Tree
Calcad Previous i-Tree Canopy Survey ?	n St Kilda Windsor	Canopy

	Percent (Cover (±SE)
	42.9	57.1
	±24.7	±28.6
80-		Т
60-	Т	-
40-	t	
20-	T	19632
0	Ť	ŃT
Id	Cover Class	Latitude
1	Tree	-37.82930543236144
2	Tree	-37.81302356330144
3	Tree	-37.81913019363144
4	Non-Tree	-37.82964905605144
5	Non-Tree	-37.81840952395144
6	Non-Tree	-37.82188855427144
7	Non-Tree	-37.81882077 144
8	Tree 💌	-37.78606178650144
+	<mark>∎Tree Non-Tree ₪ ⊲⊲</mark> Page	1 of 1 D≫ D∈ Vi

Determines % tree cover

- 🕈 Easy & Fast
- World-wide
- Web-based





Quantifies effects of:

- Tree cover -
- Impervious cover 9

on:

- Stream flow -
- Water quality 7

DAVEY

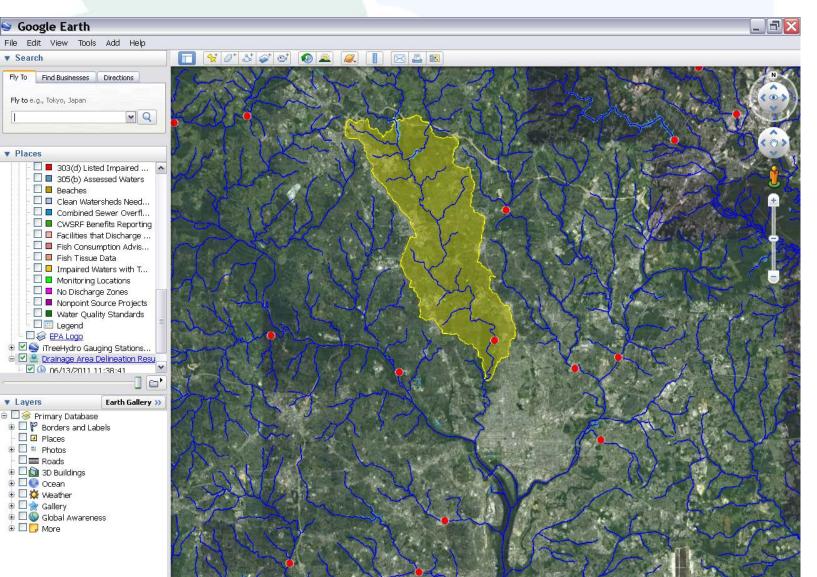
Hydro Inputs

- Hourly discharge data (USGS)
- Digital elevation map (USGS)
- **P** Hourly weather data

Evaporation data calculated from weather data

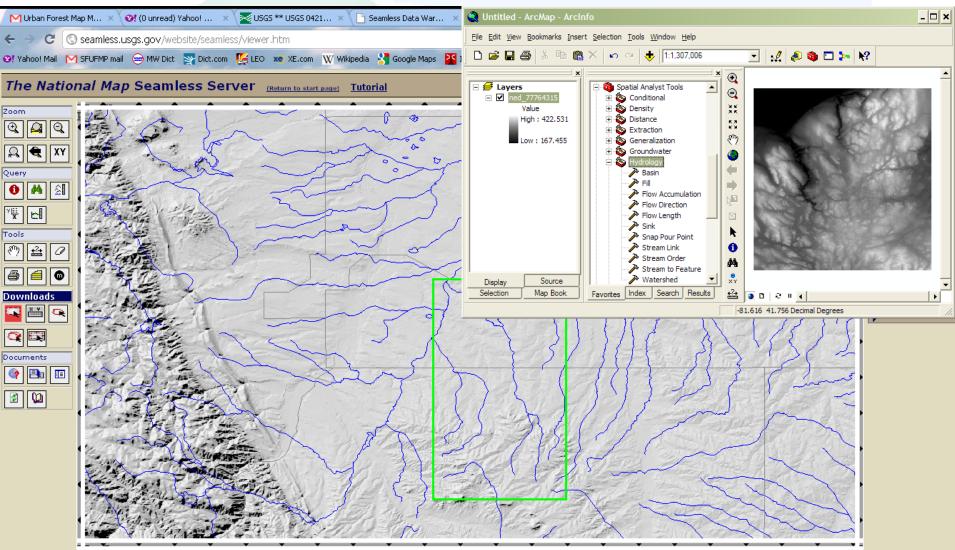
- Structural information on watershed
 - Tree cover
 - Impervious cover
 - Shrub and grass cover
 - 🕈 LAI

Hydro Outputs

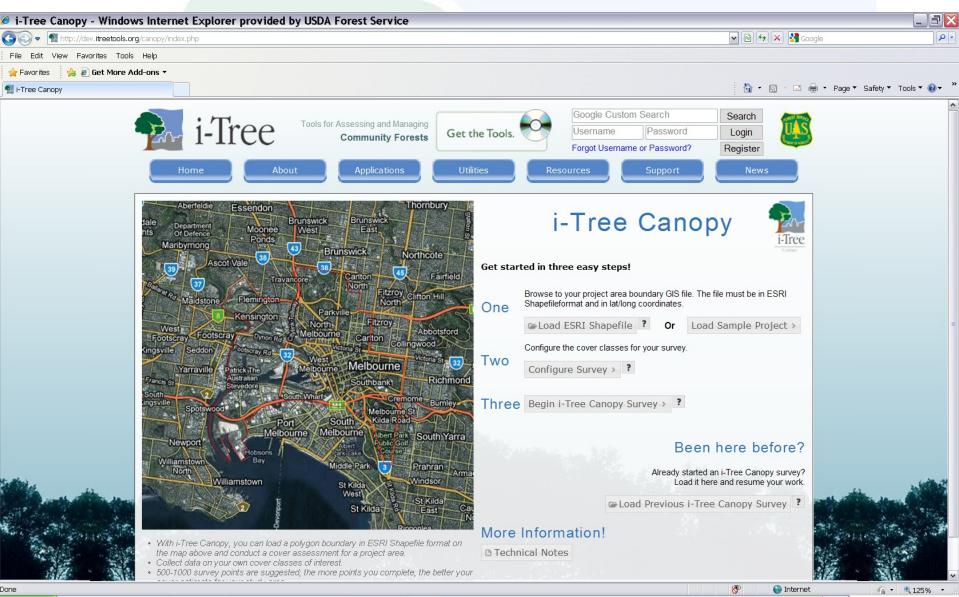

For each time step (1 hour for these simulations):

- Canopy interception
- Depression storage
- Infiltration
- Evapotranspiration
- Surface and subsurface (base flow) runoff
- Channel discharge (total runoff)
- Water quality (EMC)

Step 1: Determine watershed

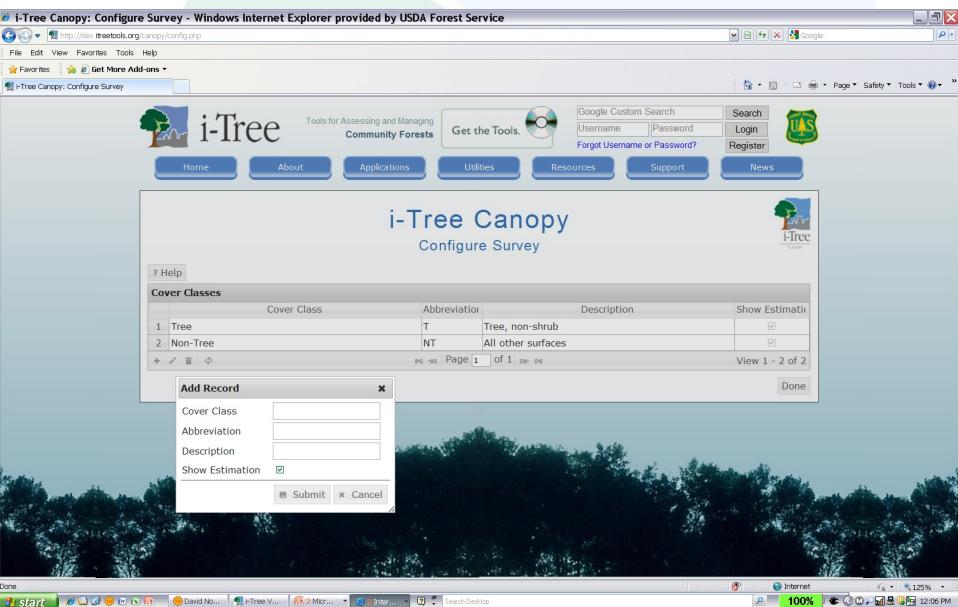

EPA Waters and gauging station data

Step 2: DEM



Click and drag to select area to download

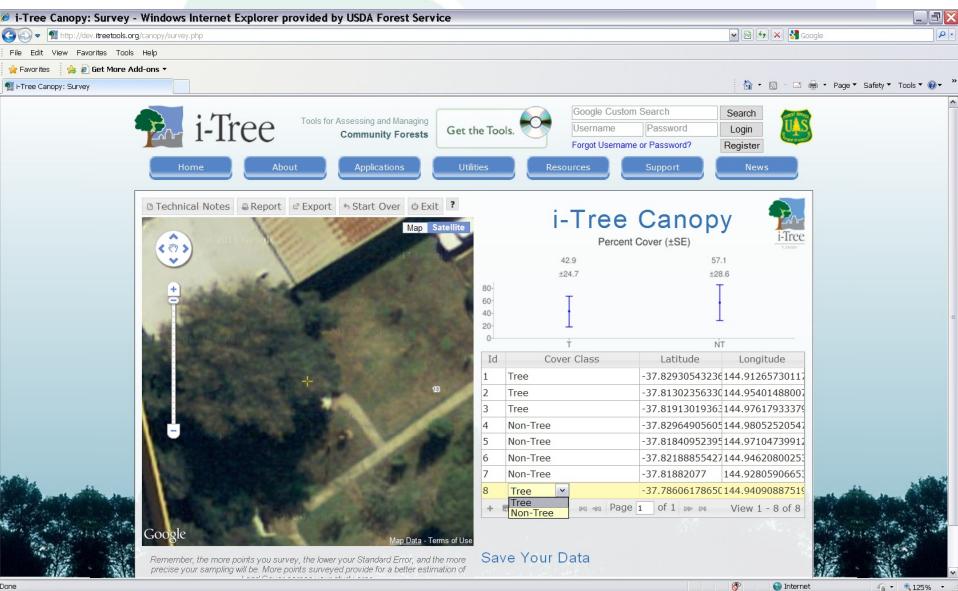
Step 3: Cover Attributes


?

Search Desktop

🔎 🔰 100% 🖉 🕊 🔇 🖸 🔎 🖬 🖳 陽 📴 12:04 PM

You choose the cover classes


Search Desktop

Iree

Done

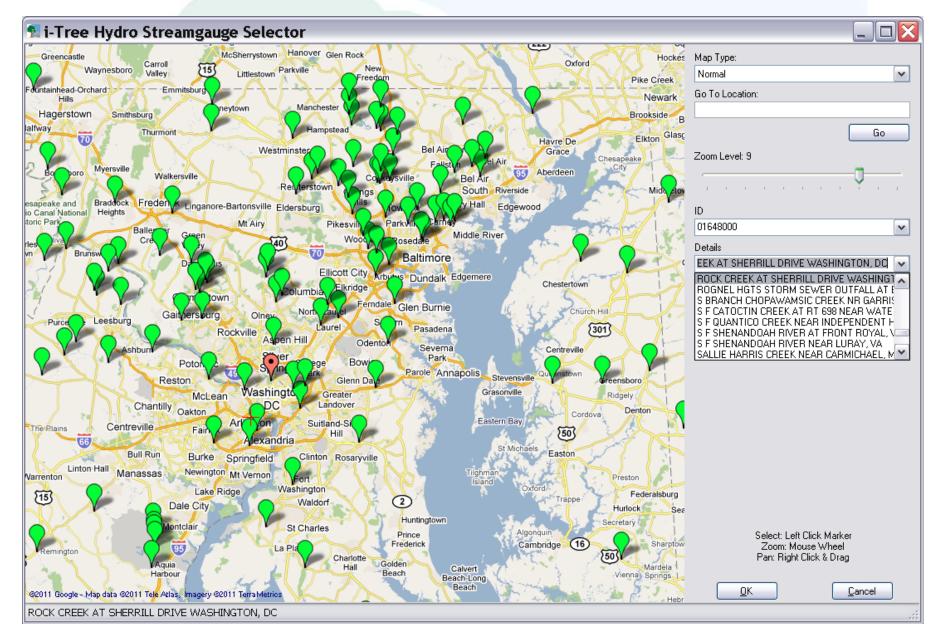
Classify random points

🔒 start 🚽 🖉 🖨 🕼 🕢 😨 🧕 🔴 David No... 🛐 i-Tree V... 🛛 🧟 2 Micr... 🔻 🥥 2 Inter... 🔻 😰 🌹 Search Desktop

2 100%

🖡 🗲 🖉 🖸 🔎 🖬 💂 🧏 🧖 12:09 PM

Step 4: Start Hydro


🕵 i-Tree Hydro

File Input Reports View Help

-Tree Hydro Raw Data Input		
earest Place to Center of Watershed	City	
itial Data *		
Watershed Land Area (m²) 0		
Percent Tree Cover 0		
Tree Leaf Area Index 5		
Percent Evergreen Tree Cover 0		
Start Date / Time 01/01/2005 00:00:00		
End Date / Time 12/31/2005 00:00:00		
ocess Stream Gauge Data		
Select by Map	OR Select	File
rocess Weather Data		
Select by Map	OR Select	File
initial Raw Data Input values are changed, you must i	eprocess the original Stream Gauge and V	leather Data and then
alibrate Hydrological parameters using the Configura		
	0	< Cancel
	1	
		Hvdro

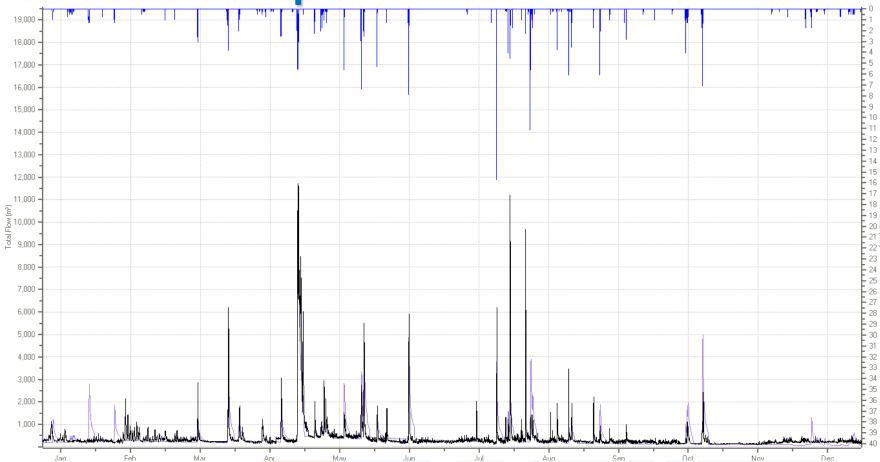
Extract Steam Data

Extract Weather Data

Load files and enter cover data

ile Input				
DEM	c:\Program Files\i-Tree\Hydro\Sample Data\dem.dat		Browse	
Veather	c:\Program Files\i-Tree\Hydro\Sample Data\Weathe	rData.dat	Browse	
Channel Routing			Browse	Create
Stream Gauge Data	c:\Program Files\i-Tree\Hydro\Sample Data\qobs.da	t	Browse	
learest Place to Cent	ter of Watershed			
State Col	orado 💉 County Blanco	City Denver	×	
nitial Data **				
	Watershed Area (m²)	28757700		
	Percent Evergreen Tree Cover (0-100) Percent Evergreen Shrub Cover (0-100)	10.6		
	Start Date / Time End Date / Time	01/01/2007 00:00:00 12/31/2007 00:00:00		
After changing Rou * Must be set with R	Start Date / Time End Date / Time ting Method, please recalibrate Hydrological Param aw Data Input form	01/01/2007 00:00:00 12/31/2007 00:00:00 eters		
* Must be set with R	Start Date / Time End Date / Time ting Method, please recalibrate Hydrological Param law Data Input form	01/01/2007 00:00:00 12/31/2007 00:00:00	<u>o</u> k	Çancel
* Must be set with R	Start Date / Time End Date / Time ting Method, please recalibrate Hydrological Param law Data Input form	01/01/2007 00:00:00 12/31/2007 00:00:00 eters	ŌK	Çancel
	Start Date / Time End Date / Time ting Method, please recalibrate Hydrological Param law Data Input form	01/01/2007 00:00:00 12/31/2007 00:00:00 eters	Ωκ	Çancel
* Must be set with R	Start Date / Time End Date / Time ting Method, please recalibrate Hydrological Param law Data Input form	01/01/2007 00:00:00 12/31/2007 00:00:00 eters	οκ	Çancel
* Must be set with R	Start Date / Time End Date / Time ting Method, please recalibrate Hydrological Param law Data Input form	01/01/2007 00:00:00 12/31/2007 00:00:00 eters	δκ	Çancel
* Must be set with R	Start Date / Time End Date / Time ting Method, please recalibrate Hydrological Param law Data Input form	01/01/2007 00:00:00 12/31/2007 00:00:00 eters	<u>ok</u>	Çancel
* Must be set with R	Start Date / Time End Date / Time ting Method, please recalibrate Hydrological Param law Data Input form	01/01/2007 00:00:00 12/31/2007 00:00:00 eters	Ōĸ	Cancel

Tree Cover (%) *	13.4	Tree LAI	3.89
Shrub Cover (%)	48.2	Shrub LAI	2.2
Herbaceous Cover (%)	0	Herbaceous LAI	0
Water Cover (%)	0		
Impervious Cover (%)	31.0	Connected Impervious to Stream (%)	40.0
Soil Cover (%)	7.4		
Total Cover (%) (Should = 100)	100.0 %		
Cover Types beneath Tree Cover			
Shrub Cover (%)	0		
Herbaceous Cover (%)	0		
Soil Cover (%)	95.5		
Impervious Cover (%)	4.5		
Total Cover (%) (Should = 100)	100.0 %		

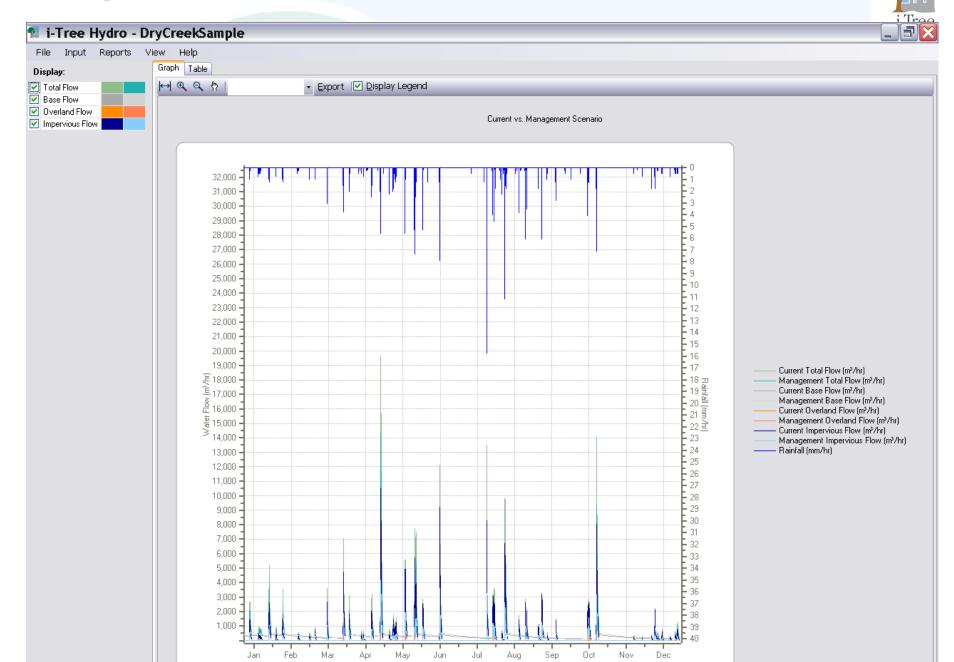


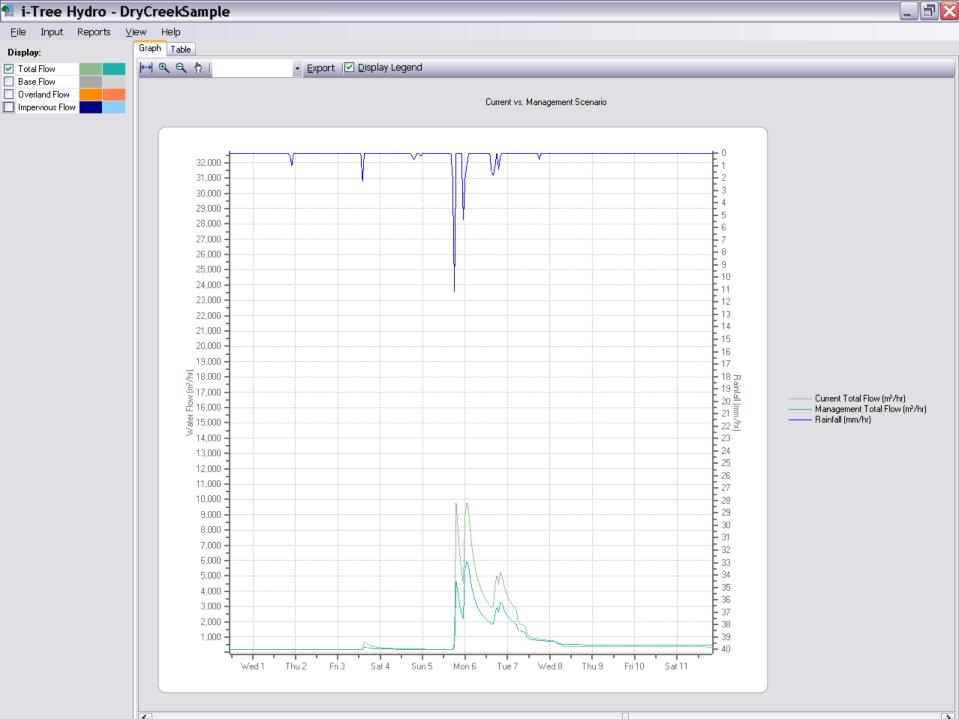
Step 5: Calibrate Model

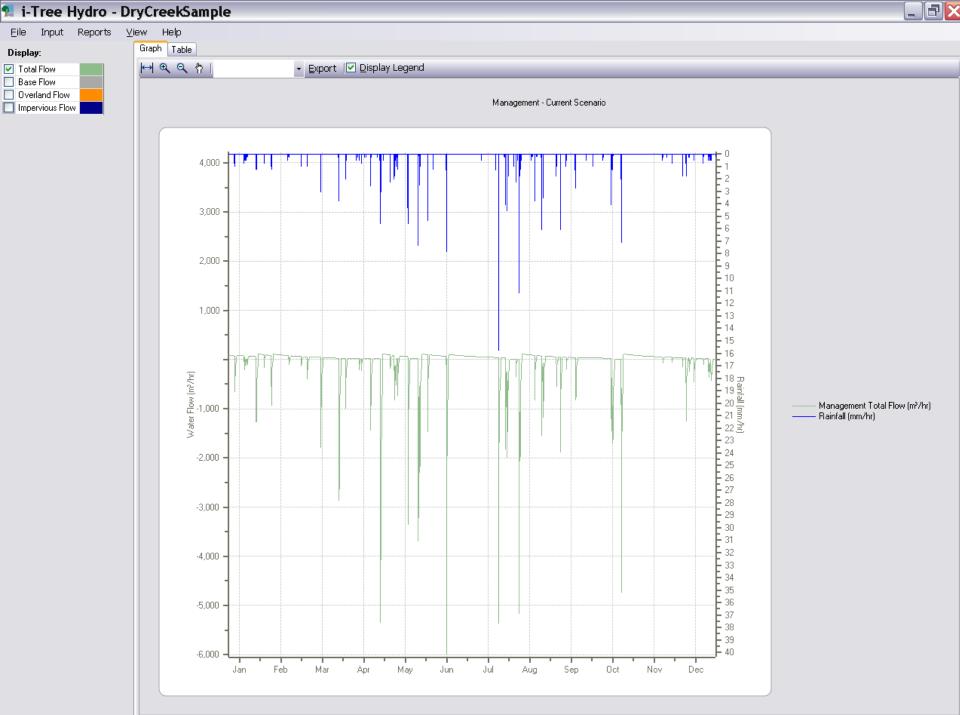
Auto-Calibrate	arameters Advanced Se	ttings	
Parameters Check Calibration			
rrent Parameter Set			
itial Values	✓ <u>Save</u>	Save <u>a</u> s New Parameter Set	Delete Parameter Set
nulation Parameter]	Initial Value	
umber of Index Increments	1	Initial Stream Discharge : Qo (m/h)	0.000015
cale Parameter of Power Function	2	Initial Root Zone Deficit (m)	0.0002
cale Parameter of Soil Transmissivity: (m)	0.03	Channel Routing Velocity	
ansmissivity at Saturation : To(m^2/h)	0.2	Main Channel Routing Velocity (m/h)	950
nsaturated Zone Time Delay : Td(h)	10	Internal Channel Routing Velocity (m/h)	950
aximum Root Zone Storage Deficit (m)	0.022	Infiltration Parameter	
ercent of Watershed Generating filtration Excess Overland Flow	30.0	Wetting Front Suction (m)	0.12
ectic Hydraulic Load		Wetted Moisture Content (m)	0.48
eptic Hydraulic Load (m/day)	0	Surface Hydraulic Conductivity (m/h)	0.002
me Constant of Watershed (b)	1	Impervious Depression Storage (mm)	1.5

i-Tree

Calibration Graph


Calibration coefficients and percent connected impervious area for select watersheds


	A	Calibration Coefficie	<u>nts</u>	% Connected
Watershed	Peak Flow	Base Flow	Balanced Flow	Impervious
Accotink	0.32	0.49	0.58	65
Baisman Run	0.55	0.63	0.70	20
Gwynns Falls	0.51	0.45	0.61	65
Mill Creek	0.62	0.10	0.43	65
Pond Branch	0.55	0.26	0.55	65
Rock Creek	0.56	0.53	0.67	65



Step 6: Model Scenarios

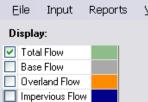
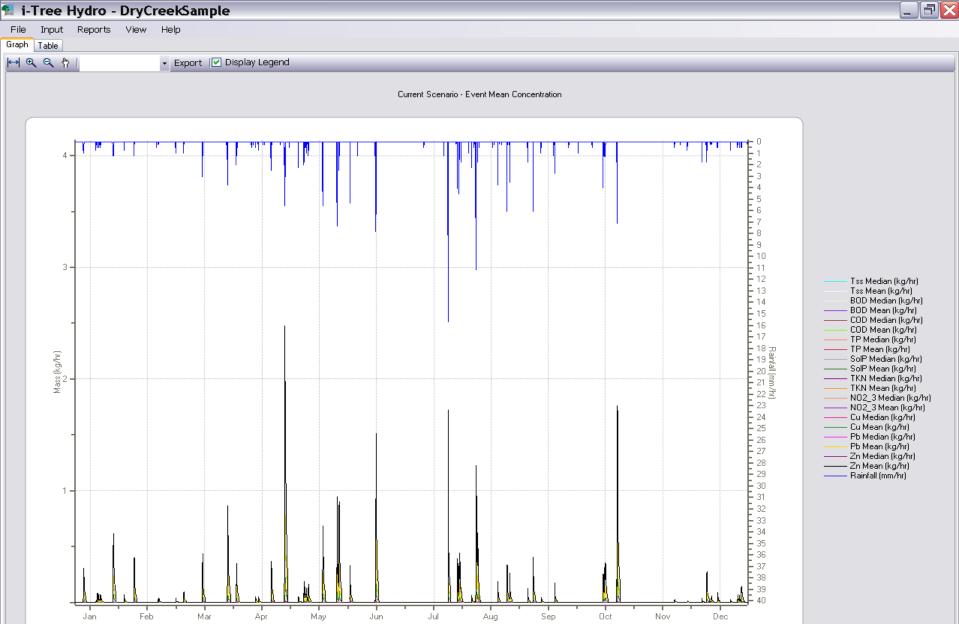


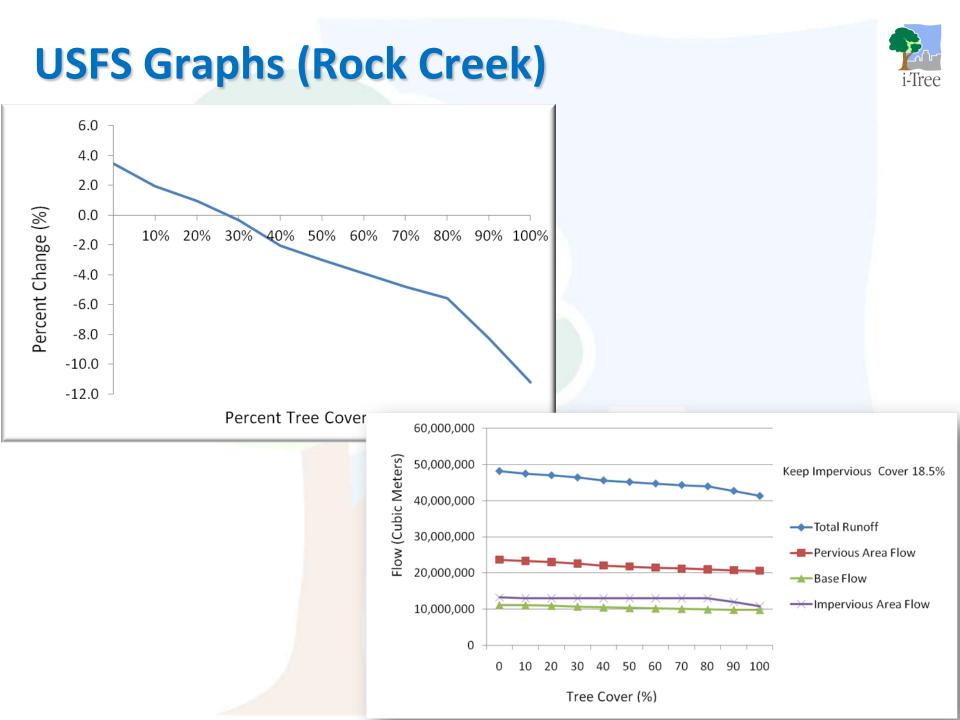
Table Outputs

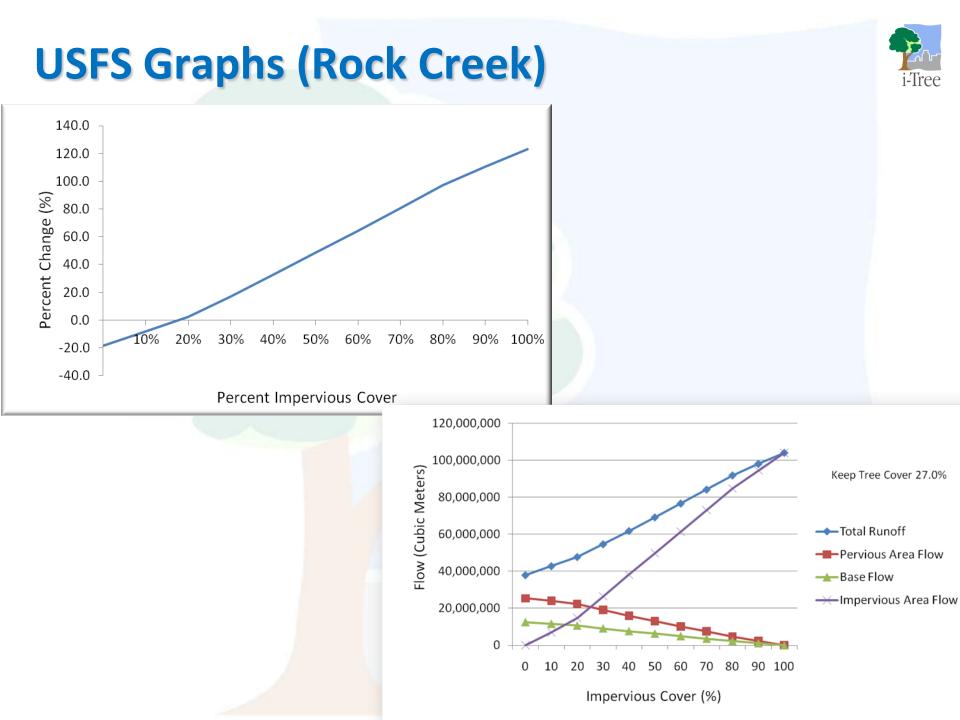
1 i-Tree Hydro - DryCreekSample

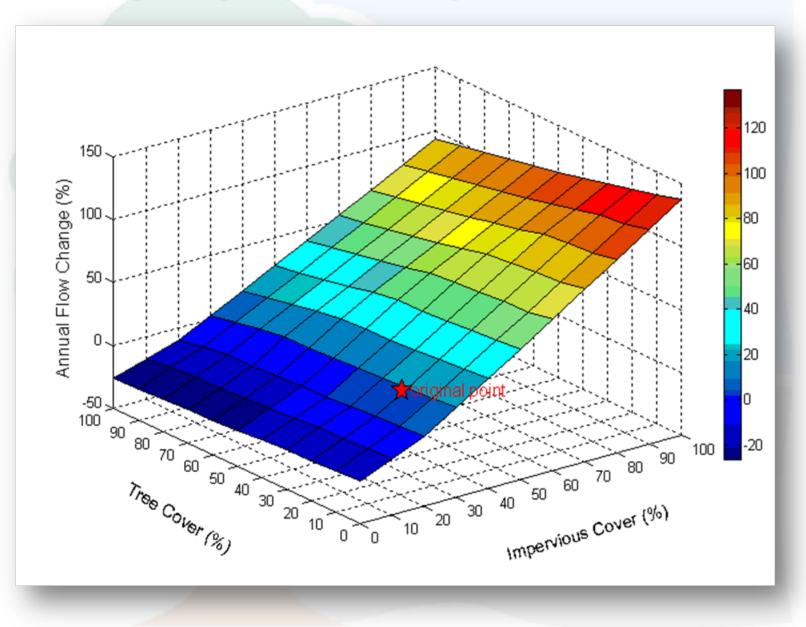


/iew Help							
Graph Table							
Ī	•	Export Total:	- N	lone -			
)ate/Time					Future Total Runoff (m³/hr)	AT at al Dunaff (m3 /lar)
_	1/01/2007 00:00:00	Rainfall (mm/hr)	0	Discharge (m ³ /hr) 244.65757063500	Total Runoff (m³/hr) 726.41950200	808.8304428900	∆Total Runoff (m³/hr) 82.4109408900
	1/01/2007 01:00:00		0	244.65757063500	294.7002822900	377.01344700	82.3131647100
_	1/01/2007 02:00:00		0	295.6291560000	294.3494383500	376.5619511100	82.2125127600
_	1/01/2007 02:00:00		0	275.23965912300	293.9957186400	376.1104552200	82.2125127600
_	1/01/2007 04:00:00		0	275.23965912300	293.644874700	375.661835100	82.016960400
_	1/01/2007 05:00:00	-	0	295.6291560000	293,2940307600	375.2132149800	81.9191842200
_	1/01/2007 06:00:00		0	244.65757063500	292.9460625900	374.7645948600	81.8185322700
_	1/01/2007 07:00:00		0	275.23965912300	292.5952186500	374.3188505100	81.7236318600
	1/01/2007 08:00:00		0	275.23965912300	292.2472504800	373.8731061600	81.6258556800
_	1/01/2007 09:00:00	-	0	275.23965912300	291.8992823100	373.4273618100	81.5280795000
_	1/01/2007 10:00:00	-	0	214.07548214700	291.5513141400	372.9816174600	81.4303033200
_	1/01/2007 11:00:00		0	316.0154895300	291.2033459700	372.5387488800	81.3354029100
_	1/01/2007 12:00:00		0	275.23965912300	290.8582535700	372.095880300	81.2376267300
_	1/01/2007 13:00:00		0	346,5993034800	290.5131611700	371.6530117200	81,1398505500
0	1/01/2007 14:00:00		0	295.6291560000	290.1680687700	371.2130189100	81.0449501400
0	1/01/2007 15:00:00		0	295.6291560000	289.8229763700	370.773026100	80.9500497300
0	1/01/2007 16:00:00		0	275.23965912300	289.4807597400	370.3330332900	80.8522735500
0	1/01/2007 17:00:00		0	316.0154895300	289.1356673400	369.8930404800	80.7573731400
0	1/01/2007 18:00:00		0	316.0154895300	288.7934507100	369.4559234400	80.6624727300
0	1/01/2007 19:00:00		0	316.0154895300	288.4512340800	369.018806400	80.5675723200
0	1/01/2007 20:00:00		0	316.0154895300	288.1118932200	368.5816893600	80.4697961400
0	1/01/2007 21:00:00		0	295.6291560000	287.7696765900	368.1445723200	80.3748957300
0	1/01/2007 22:00:00		0	275.23965912300	287.42976057600	367.7103310500	80.28057047400
0	1/01/2007 23:00:00		0	275.23965912300	287.09013213900	367.2760897800	80.18595764100
0	1/02/2007 00:00:00		0	275.23965912300	286.75107885600	366.8418485100	80.09076965400
0	1/02/2007 01:00:00		0	275.23965912300	286.41288830400	366.4104830100	79.99759470600
0	1/02/2007 02:00:00		0	295.6291560000	286.07527290600	365.9762417400	79.90096883400
0	1/02/2007 03:00:00		0	316.0154895300	285.73794508500	365.5448762400	79.80693115500
0	1/02/2007 04:00:00		0	275.23965912300	285.40147999500	365.1163865100	79.71490651500
0	1/02/2007 05:00:00		0	295.6291560000	285.06559005900	364.6850210100	79.61943095100
0	1/02/2007 06:00:00		0	244.65757063500	284.73027527700	364.2565312800	79.52625600300
0	1/02/2007 07:00:00		0	244.65757063500	284.39553564900	363.8280415500	79.43250590100
0	1/02/2007 08:00:00		0	244.65757063500	284.06137117500	363.4024275900	79.34105641500
<u> </u>	1/02/2007 09:00:00		0	214.07548214700	283.72778185500	362.9739378600	79.24615600500
	1/02/2007 10:00:00		0	244.65757063500	283.39476768900	362.548323900	79.15355621100
0	00.00 11 70001 00		0	205 0201 50000	202.0022200	202 4 22 200 4 00	70.00001.0000




Water Quality (EMC)




EMC – contrasting scenarios

USFS Graphs (Rock Creek)

Next versions

- Snow melt routine (completed)
- More fully distributed cells
- NEXRAD precipitation data
- Linking to i-Tree Eco and Design (nonwatershed based)

Summary

***i-Tree is free and available to use** www.itreetools.org Free tech support, manuals, forum Version 5 will be out in Spring 2012 Improvements to Hydro model *Looking for input on types of outputs and analyses desired for Hydro *Released in 2011

Questions?

dnowak@fs.fed.us

nrs.fs.fed.us/units/urban