

i-Tree Tools and i-Tree Hydro

March 9, 2018

Robbie Coville

The Davey Tree Expert Company

Dr. Ted Endreny

SUNY College of Environmental Science and Forestry

Outline

- Intro to the i-Tree Suite
- i-Tree and hydrology
- 🕈 i-Tree Hydro
 - Overview of methods, inputs, and outputs
 - Project setup: step-by-step demo
 - A look at outputs and a couple of use-cases
 - Optional: preview of what's new in Hydro v6.0 beta
- Where to find more info: support, videos, reports
- Wrap-up discussion, Q&A, and how can i-Tree help DEP?

What is i-Tree?

A series of FREE tools to quantify ecosystem services and values from trees (free support also)

i-Tree is a Cooperative Initiative among these partners

How do the tools differ?

General categories:

i-Tree...

"Putting USFS Urban Forest science into the hands of users"

- Public Domain Software
- Based on peerreviewed research
- Technical support
- Continuously improved

www.itreetools.org

Arbor Day Foundation

NAASF

i-Tree Landscape

- National data sets
- Explore & compare states, counties, watersheds, block groups 7

Estimate tree services and prioritize management areas

priority, based on the criteria assigned

Туре	D 🗢	Highlight	Priority Index
Block Group	391535089003		100
Block Group	391535019001		72
Block Group	391535022003	1 11	63
Block Group	391535031001		67
Block Group	391535017001		66
Block Group	391535089002		66
Block Group	391535083011		65
Block Group	391535017002		65
Block Group	391535090002		64
Block Group	391535090001		64
Block Group	391535022001		62
Block Group	391535022004		60

	Percent Cover (±SE)						
	42.9	57.1					
	±24.7	±28.6					
80-		Т					
60-	T						
40-	1	1					
20-	1						
0-	Ť	ŃT					
Id	Cover Class	Latitude					
1	Tree	-37.82930543236144					
2	Tree	-37.81302356330144					
3	Tree	-37.81913019363144					
4	Non-Tree	-37.82964905605144					
5	Non-Tree	-37.81840952395144					
6	Non-Tree	-37.82188855427144					
7	Non-Tree	-37.81882077 144					
8	Tree 💌	-37.7860617865C144					
+	E <mark>Non-Tree</mark> Marka Pa	ige 1 of 1 🐲 🔤 Vi					

Determines % tree cover

Easy & Fast World-wide Web-based

i-Tree is a Cooperative Initiative among these partners

i-Tree Species

Air Pollutant Removal (0-10 importance)

Pollutant Removal

Rank each of the following environmental services from 0 to 10 on how important these tree services are to you. 0 = not important; 10 = highly important.

i-Tree is a Cooperative Initiative among these partners

i-Tree Design v6.0

Get started with these easy steps:

- 1. Draw Structures
- 2. Place Trees

Describe your tree:

- Tree species:
 Elm, American
 Tree diameter: 30 Inches
 or circumference: 94.2
 Tree condition: Excellent
 Tree exposure to sunlight: Full sun

Tree benefit zones:

- The colored zones surrounding the structure, which appear as you describe your tree, illustrate the relative monetary value of energy savings that the tree would provide in each zone.
- Hover over each zone to see that energy benefit information displayed below the map.

To place a tree:

- Drag this icon 🚯 to the location on the map where you would like to place your tree.
- Repeat to place additional trees.
- Hover over any tree you have placed on the map to display its benefits.

Model the tree(e) future crown growth

i-Tree Design

1614 North Newcastle Avenue, Chicago, IL 60707, USA

Lat: 41.90995 Lng: -87.79631

Place trees on Google Maps imagery

Outline structures

Arbor Day Foundation

Gasey

i-Tree Design v6.0 1614 North Newcastle Avenue, Chicago, IL 60707, USA

Rapid estimate & forecast of tree benefits Stormwater, CO2, energy (heating/cooling), air quality

i-Tree is a Cooperative Initiative among these partners

i-Tree

Design

MyTree beta

i-Tree on the go!

Running on the i-Tree Design engine

www.itreetools.org/MyTree

i-Tree Eco: Quantifies Tree and Forest Resources

Structure

 Number of trees, species distribution, canopy cover, species diversity, etc.

Functions / Ecosystem Services

- 🕈 Energy use
- Air pollution (w/ health impacts)
- 🕈 UV
- 🕈 Carbon
- Biogenic VOC emissions
- Avoided runoff & hydrology
- 🕈 Wildlife

Management needs

- 🕈 Pest risk
- 🕈 Tree health
- Exotic/invasive spp.
- \$ Value

i-Tree Hydro

Quantifies effects of:

- Tree cover •
- Impervious cover

on:

- Hourly stream flow 9
- Water quality 9

Gwynns Falls Watershed, Baltimore

www.itreetools.org

4.0

2.0

0.0

-2.0

-4.0

-6.0

-8.0

-10.0

10%

Change (%)

Percent

i-Tree

i-Tree Tools for Stormwater

🕈 Hydro

- Input % land cover
- Estimates hourly changes in streamflow and water quality
- Engine for Eco's hydrology estimates

🕈 Eco

- Input big or small plots or inventory
- Estimates runoff avoided, interception, transpiration
- Runs on simplified Hydro engine

- Examine & compare watersheds
- Forest-to-Faucet dataset shows area's importance to drinking water reservoirs
- Combine tree data with US Census population data

- 🕈 Design & MyTree
 - User-friendly, quick & easy
 - Estimates tree interception, soon to be updated to include Eco's estimates of Avoided Runoff

Zooming in on i-Tree Hydro

Simulating How Land Cover Changes Affect Water Quantity & Quality

Arbor Day Foundation

ISA

Vinited States Environmental Protect Agency

i-Tree Hydro

Model Background

- Origins from discussions
 between Dr. Ted Endreny
 (SUNY-ESF) and Dr. David
 Nowak (USFS NRS)
- Wanted to replace curve number based runoff models with a processed based hydrological model

St. Elizabeth Hosp. D.C. 2006-2011 Casey Trees

Rainfall-runoff Model

- Rainfall runoff model
 - Transformation of rainfall into runoff
 - Effective precip -> Infiltration -> runoff generation
 - Runoff partitioning
 - baseflow, overland flow, shallow subsurface flow, etc.

- Routing of runoff through watershed / to the outlet
 - Building of the hydrograph, timing of flow arrival

Modeled Hydrologic Processes

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

State University of New York

Snapshot of All Inputs

- Location (State, County, Place)
- Topography (DEM or preloaded topographic index), typically of 30 or 10 m resolution
- Precipitation data
- Other weather and climate data (windspeed, solar radiation, etc.)
- Land cover data, from iTree Canopy, Ground Surveys, etc.
- Hydrology parameters

Snapshot of All Outputs

For each time step (1 hour for these simulations):

- Canopy interception
- Depression storage
- Infiltration
- Evapotranspiration
- Surface (pervious, impervious) and subsurface (base flow) flow
- Channel discharge (total flow)
- Water quality (EMC)

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

Model Inputs

Landcover

- 5 main cover classes
 - **Bare Soil** •
 - Shrub/Grass/Herbaceous (SV) •
 - **Impervious Surface** •
 - Tree Cover over Impervious Area •
 - Tree Cover over Pervious Area •
- In the future: green infrastructure
 - **Tree Pits** •
 - **Rain Gardens**
 - **Green Roofs**
 - **Porous Pavement**
 - **Rain Barrels**

Model Inputs

Canopy Properties

- Leaf Area Index (LAI) One sided leaf area per square meter of canopy
 - Tree LAI + Tree bark BAI
 - Shrub/ Herbaceaous LAI + Bark BAI
 - Deciduous vs. Coniferous makeup
- Leaf On/Off days

Hydrological Parameters

- Defaults provide baseline for comparative analysis
- Autocalibration offers localized parameterization

Source: Aguilar, M.A. et al., 2010

Interception

- f(Tree%, Shrub%, Herb.%, LAI, etc.)
 - Open space vs. canopy cover, LAI, leaf on/off days, etc.

Depression storage

- f(Landcover type, Depression depth)
 - Pervious vs. impervious different depression storage maxes

- Surface runoff pervious and impervious
 - f(Depression storage, Infiltration process, Soil moisture status)
 - Depression storage filled? Saturated soil?
 Rainfall intensity greater than infiltration rate?
 - Model user sets ratio of infiltration to saturation excess soils

Infiltration

f(K_{sat}, Rainfall intensity, Infiltration process)

- Infiltration excess Modified Green-Ampt routine
- Saturation excess unconstrained flow into rootzone

Soil Moisture

Upper Soil zone Unsaturated zone Saturated zone

f(Infiltrated water, ET, Intra-zone flow rates, Baseflow generation, etc.)

Evaporation and ET
Tree > Shrub > ET

- Potential Rates
 - Penman-Montieth

- Evap f(temp, net radiation, wind speed, etc.)
- ET f(temp,..., soil + canopy resistances)

Actual Rates

f(water availability, Storage/Rootzone depth, LAI, etc.)

Subsurface flow

f(K_{sat}, Average soil moisture deficit, Recession rate)

Streamflow Prediction

- Baseflow f(Subsurface flow)
 - Specific discharge
- Overland runoff f(Pervious and Impervious flow)
 - Per landcover percentage/area

Model Calibration

Calibration

- Method:
 - Determining optimal model parameter set
 - Optimization algorithm PEST
 - Repeated model runs
 - Comparing predicted and observed values
 - Maximize goodness of fit metrics
- Problems:
 - Equifinality Different parameter sets, same optimum
 - Disagreement between field data and model parameters

Model Calibration

Х

Parameter Calibration Results

Enable	ed Name	Volumetric Efficiency	CRF1 - Peak Flow Fit	CRF2 - Baseflow Fit	CRF3 - Overall Fit	Color		
\checkmark	Observed Discharge	N/A	N/A	N/A	N/A			
\checkmark	Rainfall	N/A	N/A	N/A	N/A			
	Suggested Default Values	0.368219	0.113362	0.182292	0.00354765			
	AutoCalibrated Parameters	0.504397	0.683245	0.358546	0.571221			

The CRF1, CRF2, and CRF3 values are a measure of how well the estimated flow matches the flow observed at the gaging station. With a very good fit, these CRF values will approach 1.0. The full range for all values is anywhere from negative infinity to 1.0, so negative values are not necessarily 'bad.' Typically, 'good' values range from 0.3 to 0.7, but higher values are better. A value of 0.0 means the model is no better than just using the observed average value to represent the observed data . In short, the calibration process is to maximize the NSE (CRF1) value.

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

State University of New York

Outputs

Water Quantity Outputs

Predicted streamflow vs. observed (if available)

Water Volume: Base Case vs. Alternative Case Predicted Streamflow Components

i-Tree is a Cooperative Initia among these parti

Outputs

Water Quality Outputs

- Pollution Loading estimates
 - Total pollutant mass
 - Based on EMC values from EPA's NURP data
 - Currently using national avg, changing to localized HUC-8 and land cover specific EMC values to distinguish changes in concentration based on location and cover type

i-Tree Hydro Introduction to Project Setup

i-Tree Hydro: An Introduction

Model interfaces

- Model inputs
- Model outputs

i-Tree Hydro: Model interface

💁 i-Tree Hydro

File Steps Outputs Help

Welcome to i-Tree Hydro!

What is Hydro? How to Run i-Tree Hydro About the Sample Project New Project Steps

General References:

i-Tree Hydro webpage Hydrologic Cycle Soil Profile User's Manual

What is Hydro?

i-Tree Hydro is a simulation tool that analyzes how land cover influences the volume and quality of runoff. It can analyze historical or future hydrological events and allow the user to contrast runoff volume and quality from existing land cover (referred to as the Base Case) with runoff from the Alternative Case land cover. The i-Tree Hydro model differs from other i-Tree products in the following ways:

- The model simulation area is loaded into the program either as a digital
 elevation model (DEM) file or as a topographic index (TI) file. It is not
 hand-delineated in the program by the user. If the user is interested in a
 watershed, they can load a DEM or TI file. If the user is interested in a city
 or parcel that is not defined by a single watershed they load a TI file.
- The model simulation can be run in calibration mode or non-calibration mode. For calibration runs the user loads observed streamflow data from a gauging station and the model will identify the optimal hydrological parameters to fit the observed streamflow data. Observed streamflow data are provided for thousands of watershed areas. For non-calibration runs the user can use previously calibrated parameters or independently set the land cover and hydrological parameter values by adjusting the default values that the model provides.

Current Project:

No project loaded.

Step 1) i-Tree Hydro Project Area Information

Nation United States of America

Basic Watershed Characteristics

Percent Evergreen Tree Cover 4.2

Percent Evergreen Shrub Cover 21.0

Observed Streamflow Data

I need to pick a USGS gage

Browse for my own raw

processed stream gage file I wish to predict streamflow for a non-gaged stream.

from a map.

stream gage file

Weather Station Data

 I need to pick a weather station it from a map

> Browse for my own raw weather file Browse for my own processed weather files

Browse for my own

Watershed Land Area (km²) 26.2375

Tree Leaf Area Index 5

Percent Tree Cover 39.2

Start Date / Time (Local) 01/01/2012 00:00:00

End Date / Time (Local) 12/30/2012 00:00:00

Stream Gage ID: 04240100

Weather Station ID: 725190-14771

Digital Elevation Model / Topographic Index

•

Browse for my own DEM file
 Use a Topographic Index

Project Location

State New York

County Onondaga

City Syracuse

DEM File: C; |Program Files (x86) |i-Tree |Hydro |Sample Data |dem.dat

Metric

Help for items on this page:

Digital Elevation Model (DEM)

Once you have identified your watershed of interest and noted the stream gage station number and stream name, your next step is to create a digital elevation model (DEM) of the watershed. The end product should be a DEM clipped to the boundaries of your watershed, projected in the proper UTM zone in meters, and converted to ASCII format. In general, you download free USGS DEM data, import it to your GIS, and use its appropriate watershed delineation tools to clip out only the watershed area. This creates the watershed's DEM for Hydro to work with. This process is explained in more detail in Appendix 1 of the manual.

coordinate system: UTM meters, with zone dependent on your project area

🕈 <u>Step 1</u>

Topographic

- Project Location
- Basic WS Info
- Streamflow
- Weather

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

Next: Step 2) i-Tree Hydro Land Cover Parameters

OK

Cancel

i-Tree Hydro: DEM vs Topographic Index Option

i-Tree is a Cooperative Initiative among these partners

🐏 Step 1) i-Tree Hydro Project Area Information

Digital Elevation Model / Topographic Index

•

Start Date / Time (Local) 01/01/2012 00:00:00

End Date / Time (Local) 12/30/2012 00:00:00 🚔

Stream Gage ID: 04240100

Weather Station ID: 725190-14771

Browse for my own DEM file

Nation United States of America

Basic Watershed Characteristics

Percent Evergreen Tree Cover 4.2

Percent Evergreen Shrub Cover 21.0

Observed Streamflow Data

I need to pick a USGS gage

Browse for my own raw

processed stream gage file I wish to predict streamflow for a non-gaged stream.

from a map.

stream gage file

Browse for my own

Weather Station Data

 I need to pick a weather station it from a map

> Browse for my own raw weather file Browse for my own processed weather files

Watershed Land Area (km²) 26.2375

Tree Leaf Area Index 5

Percent Tree Cover 39.2

Use a Topographic Index

Project Location

State New York

County Onondaga

City Syracuse

DEM File: C: |Program Files (x86) |i-Tree |Hydro |Sample Data |dem.dat

Metric

•

Help for items on this page:

Digital Elevation Model (DEM)

Once you have identified your watershed of interest and noted the stream gage station number and stream name, your next step is to create a digital elevation model (DEM) of the watershed. The end product should be a DEM clipped to the boundaries of your watershed, projected in the proper UTM zone in meters, and converted to ASCII format. In general, you download free USGS DEM data, import it to your GIS, and use its appropriate watershed delineation tools to clip out only the watershed area. This creates the watershed's DEM for Hydro to work with. This process is explained in more detail in Appendix 1 of the manual.

coordinate system: UTM meters, with zone dependent on your project area i-Tree

Step 1

Topographic

- Project Location
- Basic WS Info
- Streamflow
- Weather

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

Next: Step 2) i-Tree Hydro Land Cover Parameters

Cancel

OK

🕺 Step 1) i-Tree Hydro Project Area Information

Digital Elevation Model / Topographic Index

•

21.0

Stream Gage ID: 04240100

Weather Station ID; 725190-14771

Start Date / Time (Local) 01/01/2012 00:00:00

End Date / Time (Local) 12/30/2012 00:00:00

- Browse for my own DEM file
- Use a Topographic Index

Nation United States of America

Basic Watershed Characteristics

Percent Evergreen Tree Cover 4.2

Percent Evergreen Shrub Cover

Observed Streamflow Data

I need to pick a USGS gage

Browse for my own raw

processed stream gage file I wish to predict streamflow for a non-gaged stream.

from a map.

stream gage file

Weather Station Data

 I need to pick a weather station it from a map

> Browse for my own raw weather file Browse for my own processed weather files

Browse for my own

Watershed Land Area (km²) 26.2375

Tree Leaf Area Index 5

Percent Tree Cover 39.2

Project Location

State New York

County Onondaga

City Syracuse

DEM File: C: \Program Files (x86) \i-Tree \Hydro \Sample Data \dem.dat

Metric

•

Help for items on this page:

Digital Elevation Model (DEM)

Once you have identified your watershed of interest and noted the stream gage station number and stream name, your next step is to create a digital elevation model (DEM) of the watershed. The end product should be a DEM clipped to the boundaries of your watershed, projected in the proper UTM zone in meters, and converted to ASCII format. In general, you download free USGS DEM data, import it to your GIS, and use its appropriate watershed delineation tools to clip out only the watershed area. This creates the watershed's DEM for Hydro to work with. This process is explained in more detail in Appendix 1 of the manual.

coordinate system: UTM meters, with zone dependent on your project area i-Tree

🕈 <u>Step 1</u>

Project Location

- Basic WS Info
- Streamflow
- Weather
- Topographic

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

Next: Step 2) i-Tree Hydro Land Cover Parameters

Cancel

OK

i-Tree Hydro: Land Cover Data (via i-Tree Canopy)

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

State University of New York

i-Tree Hydro: Stream Data

i-Tree Hydro: Weather Data

🧾 WeatherData	.dat - Notepad						
File Edit For	mat View Help						
yyyymmdd	Hr:Min:Sec	Tair(F)	Tdew(F)	NetRad(W/m^2)	WndSpd(m/s)	Precip(m/hr)	Snow(m/hr)
20110101 20110101	00:00:00 01:00:00	42.70000000 40.00000000	34.90000000 34.00000000	0.00000000	3.44210997 2.23513634	0.00000000	0.00000000 0.00000000
20110101 20110101 20110101	02:00:00 03:00:00	42.10000000 42.90000000 42.00000000	34.10000000 35.00000000	0.00000000 0.00000000 0.00000000	3.48681270 2.68216361	0.00000000	0.00000000
20110101 20110101 20110101	04:00:00 05:00:00 06:00:00	36.85000000 36.76000000	35.00000000 36.00000000 36.00000000	0.00000000	2.68216361 0.00000000 1.01922217	0.00000000 0.00025400 0.00000000	0.00000000 0.00000000 0.00000000
20110101 20110101	07:00:00 08:00:00	36.00000000 35.31578947	36.00000000 35.31578947	0.00000000 12.50021015	1.34108181 0.00000000	0.00000000	0.00000000
20110101 20110101 20110101	09:00:00 10:00:00 11:00:00	36.00000000 37.00000000 47.00000000	36.00000000 37.00000000 41.00000000	53.31007742 88.96392811 180.3095209	0.44702727 0.00000000 2.77156907	0.00000000 0.00000000 0.00000000	0.00000000 0.00000000 0.00000000
20110101 20110101	12:00:00 13:00:00	47.20000000 49.00000000	41.10000000 42.00000000	382.4534808 174.0454807	3.48681270 2.68216361	0.00000000 0.00000000	0.00000000 0.02540000
20110101 20110101 20110101	14:00:00 15:00:00	49.90000000 49.00000000 49.00000000	42.90000000 42.00000000 42.00000000	131.4296478 159.7079611	3.17389361 3.71032633 4.91729996	0.00000000 0.00000000 0.00000000	0.00000000 0.00000000 0.00000000
20110101 20110101 20110101	16:00:00 17:00:00 18:00:00	46.00000000	41.90000000 41.10000000	27.88483690 0.00000000 0.00000000	4.91/29996 3.57621815 3.63582179	0.00000000	0.00000000
20110101 20110101 20110101	19:00:00 20:00:00	49.00000000 49.10000000	42.00000000	0.00000000	3.12919088 3.71032633	0.00000000 0.00000000 0.00000000	0.02540000
20110101 20110101	21:00:00 22:00:00 23:00:00	50.00000000 50.00000000 49.00000000	40.00000000 40.00000000 39.00000000	0.00000000 0.00000000 0.00000000	5.05140814 6.25838176 6.79481448	0.000000000	0.00000000 0.00000000 0.00000000
20110102 20110102	00:00:00 01:00:00	48.90000000 48.00000000	39.10000000 40.00000000	0.00000000 0.00000000	7.42065266 5.81135449	0.00000000 0.00000000	0.02540000 0.02540000

i-Tree is a Cooperative Initiative among these partners

i-Tree Hydro: Land Cover Parameters

Arbor Day Foundation

among these partners

NAASE

i-Tree Hydro: Land Cover Parameters

Step 2) i-Tree Hydro Land Cover Parameters

These parameter values describe the study area land cover conditions.

Project Location: Atlanta, Georgia Help for items on this page:

Shrub Leaf Area Index

X

Leaf Area Index (LAI) is defined as the one sided green leaf area per unit ground area in broadleaf canopies, or as the projected needleleaf area per unit ground area in needle canopies. I-Tree Eco users: Leaf area indexes can be calculated from Eco results for leaf area. These results are presented in units of m2/ha. To get LAI, divide by 10,000. way to think about LAI is to imagino drawing a cquaro on

And it is important to know what typically is going on beneath areas of tree canopy.

Cover Types beneath	Troo Covor	Imagine drawing a square on
Cover Types Delleau	Tree Cover	the ground under a tree canopy,
Pervious Cover (%)	86.4	with sides 1 meter in length.
Impervious Cover (%)	13.6	Standing in this 1-meter square
Impervious cover (70)	1010	area, looking up into the tree
		canopy, the LAI represents the
		surface area (1-sided) of the
		leaves present directly above
Total Cover (%)		this 1 meter square area.
(Should = 100)	100.0	Typical LAI values range from
		1-7, representing 1-7 square

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

Next: Step 3) i-Tree Hydro Hydrological Parameters

OK

Cancel

i-Tree Hydro: Land Cover Parameters

These parameter values describe the study area land cover conditions.

Surface Cover Types

And it is important to know what typically is going on beneath areas of tree canopy.

Cover Types beneath Tree Cover Pervious Cover (%) 86.4 Impervious Cover (%) 13.6 this 1 meter square area. Total Cover (%) 100.0(Should = 100)Next: Step 3) i-Tree Hydro Hydrological Parameters OK

Project Location: Atlanta, Georgia Help for items on this page:

Shrub Leaf Area Index

Leaf Area Index (LAI) is defined as the one sided green leaf area per unit ground area in broadleaf canopies, or as the projected needleleaf area per unit ground area in needle canopies. I-Tree Eco users: Leaf area indexes can be calculated from Eco results for leaf area. These results are presented in units of m2/ha. To get LAI, divide by 10,000. way to think about LAI is to imagine drawing a square on the ground under a tree canopy, with sides 1 meter in length. Standing in this 1-meter square area, looking up into the tree canopy, the LAI represents the surface area (1-sided) of the leaves present directly above Typical LAI values range from 1-7, representing 1-7 square

Cancel

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

Step 3) i-Tree Hydro Hydrological Parameters

Not

Pa

We

com

An

The into

Con and

among these partners

These parameters define study area soil, vegetation, and water conditions. The goal is to adjust them until modeled streamflow resembles observed streamflow.

You may create and compare multiple parameter sets. Start by Auto-Calibrating with the Suggested Default Values, and then Compare the Parameter Set Calibration Results. You modify these parameter sets by FIRST Retaining and Editing a NEW Parameter Set. At any time, run the Auto-Calibration routine with any Current Parameter set to create new Auto-Calibrated Parameters which may then be further adjusted.

te: Al	ıto-calibration is	available only	when modeling	a watershed.				Parameters that
	nt paramete		toCalibrated Para					will use as it atte
	Retain and Ed paramete		Delete this	parameter set	Auto-Calibrate this Parameter Set	Compare Para Calibration		a best-fit scenari your model input observed stream
ram	eters:				Advar	nced Settings]	stream gage. Th that are currently
	with a preliminar prough the gauge		ne amount of wa	ter	Leaf Tran	sition Period (days)	28	be used in either
-				[]	Leaf On Day (Day of year 1-365)	75	Calibration routin
nual	Average How	at Gauging	Station (cms)	0.1535422500	Leaf Off Day (Day of year 1-365)	311	against other par
					Tr	ee Bark Area Index	1.7	that you may cho scenario.
	select a soil type through the grou		or the way wate	r moves	Shr	ub Bark Area Index	0.5	scenario.
						Leaf Storage (mm)	0.2	Upon exiting this
	Soil Type	Blended Tex	ture		Pervious Depre	ssion Storage (mm)	0.8012	hydrological para
	W	etting Fron	t Suction (m)	0.1200000	Impervious Depre	ssion Storage (mm)	1.7239615	displayed will be
	Wett	ed Moisture	Content (m)	0.4800000	Scale Parameter	of Power Function	2	model.
	Surface Hydr	raulic Condu	ctivity (cm/h)	0.2970000	Scale Parameter of	f Soil Transmissivity	0.027938	Refer to the man
	Sunace rije		centry (entyrity		Transmissivity a	t Saturation (m²/h)	0.057036	information.
	of the soil in ten r content is set i		netration		Unsaturated Z	one Time Delay (h)	10.0000	mornddon
wate			oot Zone (m)	0.014869	Time Constant for Surfa	ace Flow: Alpha (h)	1.175744289	
					Time Constant for Sur	face Flow: Beta (h)	47.0259259	
	Initial Soil	Saturation (Condition (%)	35.75160		where rainfall rate infiltration rate (%)	100	
						Martin Chan (1) ()	Too a landor Alton	native Case OK
						Next: Step 4) i-1	ree Hyaro Alteri	
		-						
	<mark>i-Tr</mark> ee is a erative Initiative	e - 🎊	DAVE	A (0)	r Day Foundation	🖋 ISA	- A	ESF _
mon	a those pertner		DAVE	Arbo	r Day roundation		Casey Trees	State University of New York

x

Help for items on this page:

Project Location: Atlanta, Georgia

Current Parameter Set

These are the Hydrological i-Tree Hydro empts to create io between all ts and the flow at the he parameters y displayed will the Autone or compared rameter sets so oose the best-fit

screen, the ameters last used within the

ual for more

Cancel

Step 3) i-Tree Hydro Hydrological Parameters

These parameters define study area soil, vegetation, and water conditions. The goal is to adjust them until modeled streamflow resembles observed streamflow.

You may create and compare multiple parameter sets. Start by Auto-Calibrating with the Suggested Default Values, and then Compare the Parameter Set Calibration Results. You modify these parameter sets by FIRST Retaining and Editing a NEW Parameter Set. At any time, run the Auto-Calibration routine with any Current Parameter set to create new Auto-Calibrated Parameters which may then be further adjusted.

Note: Auto-calibration is available only when modeling a watershed.

Current paramete	r set: AutoCalibrated P	arameters 🔹 🔻				a best-fit sce		
Retain and Ec paramete	Delete t	his parameter set	Auto-Calibrate this Parameter Set	Compare Para Calibration		your model in observed structure		
Parameters:			Advanced	Settings		stream gage that are curr		
We start with a preliminal coming through the gaug	ry value for the amount of i e,	vater	Leaf Transition		28	be used in ei Calibration re		
Annual Average Flow at Gauging Station (cms) 0.1535422500			Leaf Off Day (Day o	Leaf On Day (Day of year 1-365) 75 Leaf Off Day (Day of year 1-365) 311 Tree Bark Area Index 1.7				
Then we select a soil type into and through the grou	e to account for the way wa ind.	ter moves	Shrub Ba	rk Area Index	0.5	scenario.		
Soil Type V	Blended Texture	•) 0.1200000	Lear Pervious Depression Impervious Depression		0.2	Upon exiting hydrological displayed wil		
	ed Moisture Content (n raulic Conductivity (cm/ł	·	Scale Parameter of Soil	ower Function	2	model. Refer to the		
Condition of the soil in ter and water content is set i	rms of root penetration		Transmissivity at Satu Unsaturated Zone T	Time Delay (h)	0.057036	information.		
Initial Soil	Depth of Root Zone (m Saturation Condition (%	-	Time Constant for Surface Fl Time Constant for Surface F Watershed area where can exceed infiltra	Flow: Beta (h) e rainfall rate	1.175744289 47.0259259 100			
					Tree Hydro Alter	native Case		
i-Tree is a		•		TOP		ESF		

x

Help for items on this page:

Current Parameter Set

These are the Hydrological Parameters that i-Tree Hydro ttempts to create ario between all outs and the amflow at the The parameters ntly displayed will her the Autoutine or compared parameter sets so choose the best-fit

his screen, the arameters last be used within the

nanual for more

Cooperative Initiative among these partners

Arbor Day Foundation

Project Location: Atlanta, Georgia

Cancel

Step 3) i-Tree Hydro Hydrological Parameters

These parameters define study area soil, vegetation, and water conditions. The goal is to adjust them until modeled streamflow resembles observed streamflow.

You may create and compare multiple parameter sets. Start by Auto-Calibrating with the Suggested Default Values, and then Compare the Parameter Set Calibration Results. You modify these parameter sets by FIRST Retaining and Editing a NEW Parameter Set. At any time, run the Auto-Calibration routine with any Current Parameter set to create new Auto-Calibrated Parameters which may then be further adjusted.

Note: Auto-calibration is available only when modeling a watershed. Current parameter set: AutoCalibrated Parameters Retain and Edit as NEW Auto-Calibrate this Compare Parameter Set Delete this parameter set parameter set Parameter Set Calibration Results Advanced Settings Parameters: We start with a preliminary value for the amount of water Leaf Transition Period (days) 28 coming through the gauge. Leaf On Day (Day of year 1-365) 75 Annual Average Flow at Gauging Station (cms) 0.1535422500 311 Leaf Off Day (Day of year 1-365) 1.7 Tree Bark Area Index scenario. Then we select a soil type to account for the way water moves Shrub Bark Area Index 0.5 into and through the ground. Leaf Storage (mm) 0.2 Soil Type Blended Texture 0.8012 Pervious Depression Storage (mm) Wetting Front Suction (m) 0.1200000 Impervious Depression Storage (mm) 1.7239615 model. Wetted Moisture Content (m) Scale Parameter of Power Function 0.4800000 0.027938 Scale Parameter of Soil Transmissivity Surface Hydraulic Conductivity (cm/h) 0.2970000 0.057036 Transmissivity at Saturation (m²/h) Condition of the soil in terms of root penetration 10.0000 Unsaturated Zone Time Delay (h) and water content is set next. Time Constant for Surface Flow: Alpha (h) 1.175744289 Depth of Root Zone (m) 0.014869 Time Constant for Surface Flow: Beta (h) 47.0259259 Initial Soil Saturation Condition (%) 35.75160 Watershed area where rainfall rate 100 can exceed infiltration rate (%) OK Next: Step 4) i-Tree Hydro Alternative Case

Current Parameter Set

These are the Hydrological Parameters that i-Tree Hydro will use as it attempts to create a best-fit scenario between all your model inputs and the observed streamflow at the stream gage. The parameters that are currently displayed will be used in either the Auto-Calibration routine or compared against other parameter sets so that you may choose the best-fit scenario.

Upon exiting this screen, the hydrological parameters last displayed will be used within the model.

Refer to the manual for more information.

Cancel

X

Step 3) i-Tree Hydro Hydrological Parameters

These parameters define study area soil, vegetation, and water conditions. The goal is to adjust them until modeled streamflow resembles observed streamflow.

You may create and compare multiple parameter sets. Start by Auto-Calibrating with the Suggested Default Values, and then Compare the Parameter Set Calibration Results. You modify these parameter sets by FIRST Retaining and Editing a NEW Parameter Set. At any time, run the Auto-Calibration routine with any Current Parameter set to create new Auto-Calibrated Parameters which may then be further adjusted.

Note: Auto-calibration is available only when modeling a watershed. Current parameter set: AutoCalibrated Parameters Retain and Edit as NEW Auto-Calibrate this Compare Parameter Set Delete this parameter set parameter set Parameter Set Calibration Results Advanced Settings Parameters: We start with a preliminary value for the amount of water Leaf Transition Period (days) 28 coming through the gauge. Leaf On Day (Day of year 1-365) 75 Annual Average Flow at Gauging Station (cms) 0.1535422500 311 Leaf Off Day (Day of year 1-365) 1.7 Tree Bark Area Index Then we select a soil type to account for the way water moves Shrub Bark Area Index 0.5 into and through the ground. Leaf Storage (mm) 0.2 Soil Type Blended Texture 0.8012 Pervious Depression Storage (mm) Wetting Front Suction (m) 0.1200000 Impervious Depression Storage (mm) 1.7239615 Wetted Moisture Content (m) Scale Parameter of Power Function 0.4800000 0.027938 Scale Parameter of Soil Transmissivity Surface Hydraulic Conductivity (cm/h) 0.2970000 0.057036 Transmissivity at Saturation (m²/h) Condition of the soil in terms of root penetration 10.0000 Unsaturated Zone Time Delay (h) and water content is set next. Time Constant for Surface Flow: Alpha (h) 1.175744289 Depth of Root Zone (m) 0.014869 Time Constant for Surface Flow: Beta (h) 47.0259259 Initial Soil Saturation Condition (%) 35.75160 Watershed area where rainfall rate 100 can exceed infiltration rate (%)

Current Parameter Set

X

These are the Hydrological Parameters that i-Tree Hydro will use as it attempts to create a best-fit scenario between all your model inputs and the observed streamflow at the stream gage. The parameters that are currently displayed will be used in either the Auto-Calibration routine or compared against other parameter sets so that you may choose the best-fit scenario.

Upon exiting this screen, the hydrological parameters last displayed will be used within the model.

Refer to the manual for more information.

Next: Step 4) i-Tree Hydro Alternative Case

OK

Cancel

i-Tree is a Cooperative Initiative among these partners

🐏 Step 3) i-Tree Hydro Hydrological Parameters

These parameters define study area soil, vegetation, and water conditions. The goal is to adjust them until modeled streamflow resembles observed streamflow.

You may create and compare multiple parameter sets. Start by Auto-Calibrating with the Suggested Default Values, and then Compare the Parameter Set Calibration Results. You modify these parameter sets by FIRST Retaining and Editing a NEW Parameter Set. At any time, run the Auto-Calibration routine with any Current Parameter set to create new Auto-Calibrated Parameters which may then be further adjusted.

Note: Auto-calibration is available only when modeling a watershed.

urrent paramete	er set: AutoCalibrated Par	ameters •			a best-fit so
Retain and Ed paramet	Delete th	s parameter set	Auto-Calibrate this Parameter Set	Compare Parameter Set Calibration Results	your model observed str
arameters:			Advanc	ed Settings	stream gage that are curr
e start with a prelimina ming through the gaug	ry value for the amount of wa	ater	Leaf Transit	ion Period (days) 28	be used in e
	at Gauging Station (cms)	0.1535422500	Leaf On Day (Da	ay of year 1-365) 75	Calibration r
Initial Average Flow	at Gauging Station (cris)	0.1555422500	Leaf Off Day (Da	ay of year 1-365) 311	against othe
			Tree	Bark Area Index 1.7	that you may scenario.
en we select a soil typ o and through the grou	e to account for the way wate und.	er moves	Shrub	Bark Area Index 0.5	Scenario.
Soil Type			Le	eaf Storage (mm) 0.2	Upon exiting
	Blended Texture		Pervious Depress	ion Storage (mm) 0.8012	hydrological
V	Vetting Front Suction (m)	0.1200000	Impervious Depress	ion Storage (mm) 1.7239615	displayed w
Wet	ted Moisture Content (m)	0.4800000	Scale Parameter o	f Power Function 2	model.
Surface Hvd	raulic Conductivity (cm/h)	0.2970000	Scale Parameter of S	Soil Transmissivity 0.027938	Refer to the
bunded nye			Transmissivity at 9	Saturation (m²/h) 0.057036	information.
ndition of the soil in te d water content is set	rms of root penetration		Unsaturated Zor	ne Time Delay (h) 10.0000	
i water content is set	Depth of Root Zone (m)	0.014869	Time Constant for Surfac	e Flow: Alpha (h) 1.175744289	
			Time Constant for Surfa	ce Flow: Beta (h) 47.0259259	
Initial Soil	Saturation Condition (%)	35.75160	Watershed area w can exceed inf	here rainfall rate îltration rate (%) 100	
			/	Vext: Step 4) i-Tree Hydro Alter	native Case

Project Location: Atlanta, Georgia Help for items on this page:

Current Parameter Set

These are the Hydrological Parameters that i-Tree Hydro will use as it attempts to create a best-fit scenario between all your model inputs and the observed streamflow at the stream gage. The parameters that are currently displayed will be used in either the Auto-Calibration routine or compared against other parameter sets so that you may choose the best-fit scenario.

Upon exiting this screen, the hydrological parameters last displayed will be used within the model.

Refer to the manual for more information.

a

TI in

C

Arbor Day Foundation

sity of New Yor

Cancel

x

i-Tree Hydro: Alternative Case

Input the Cover Type values below to reflect the Alternative Land Use Scenario you wish to model. Example: increase your tree canopy and decrease your impervious cover. Remember: all the cover types must add to 100%

Base	Alternative Case			Base	Alternative Case	Percent Tree Cover
36.8	20.0		Tree Leaf Area Index	5	5	How much of your watershed area is covered
14.2	14.2	1	Shrub Leaf Area Index	2.2	2.2	by tree canopy? Here you
14.2	14.2	1	Herbaceous Leaf Area	1.6	1.6	would enter this percentag This percentage represents
0.2	0.2	~	Index			tree canopy found over bot
33.6	50.4		Directly Connected	20.9	40.0	pervious and impervious cover. For example, trees
1.0	1.0		Impervious cover (76)			planted in a parking lot,
100.0	100.0					where the majority of the canopy might be over impervious asphalt, and
T ree Cove Base Case	r Alternative Case					where the canopy is over pervious soil/grass, are bo included in this percentage
86.4	70.0]				This percentage could com from data sources you have
13.6	30.0]				already compiled or you
100.0	100.0					could make use of other i- Tree tools, such as i-Tree Canopy (www.itreetools.org/canop , to create a statistical
	Case 36.8 14.2 14.2 0.2 33.6 1.0 100.0 Free Cove Base Case 86.4 13.6	Case Case 36.8 20.0 14.2 14.2 14.2 14.2 14.2 14.2 14.2 0.2 33.6 50.4 1.0 1.0 100.0 100.0	Case Case 36.8 20.0 14.2 14.2 14.2 14.2 14.2 14.2 0.2 0.2 33.6 50.4 1.0 1.0 100.0 100.0 Free Cover Alternative Case 86.4 70.0 30.0	Case Case 36.8 20.0 14.2 14.2 10.0 1.0 100.0 100.0 Tree Cover Ease Base Alternative Case Sa.4 86.4 70.0 13.6 30.0	Case Case Case 36.8 20.0 > Tree Leaf Area Index 5 14.2 14.2 14.2 Shrub Leaf Area Index 2.2 14.2 14.2 14.2 Herbaceous Leaf Area Index 2.2 14.2 14.2 14.2 Idex 1.6 0.2 0.2 0.2 Directly Connected Index 20.9 33.6 50.4 Directly Connected Impervious Cover (%) 20.9 1.0 1.0 100.0 100.0 20.9 ree Cover Sase Sase Sase 86.4 70.0 30.0 30.0	Case Case

among these partners

23

=

Help for items on this page:

State University of New York

i-Tree Hydro: Alternative Case

Step 4) Define an i-Tree Hydro Alternative Case

Input the Cover Type values below to reflect the Alternative Land Use Scenario you wish to model. Example: increase your tree canopy and decrease your impervious cover. Remember: all the cover types must add to 100%

	Base Case	Alternative Case			Base Case	Alternative Case		much of your	
Tree Cover (%)	36.8	20.0	•	Tree Leaf Area Index	5	5		rshed area is	
Shrub Cover (%)	14.2	14.2	1	Shrub Leaf Area Index	2.2	2.2		ee canopy? H d enter this p	
Herbaceous Cover (%)	14.2	14.2	۵	Herbaceous Leaf Area Index	1.6	1.6		percentage r	
Water Cover (%)	0.2	0.2]					canopy found	
Impervious Cover (%)	33.6	50.4	•	Directly Connected Impervious Cover (%)	20.9	40.0		ious and impe r. For examp	
Soil Cover (%)	1.0	1.0]				plant	ted in a parkir	ng lot,
Total Cover (%) (Should = 100)	100.0	100.0					cano	re the majorit py might be c rvious asphal	over
Cover Types beneath T	Free Cove Base Case	r Alternative Case					wher perv	s planted in pa re the canopy ious soil/grass ded in this pe	is over s, are bo
Soil Cover (%)	86.4	70.0						percentage c data sources	
Impervious Cover (%)	13.6	30.0]					data sources ady compiled (
Total Cover (%)	100.0	100.0					Tree Cano	d make use of tools, such a ppy w.itreetools.o	is i-Tree
(Should = 100)	100.0	100.0					, to (create a statis	stical

23

Help for items on this page:

i-Tree Hydro: Alternative Case

23

=

Help for items on this page:

Step 4) Define an i-Tree Hydro Alternative Case

Input the Cover Type values below to reflect the Alternative Land Use Scenario you wish to model. Example: increase your tree canopy and decrease your impervious cover. Remember: all the cover types must add to 100%

among these partners

-Surface Cover Types	Base Case	Alternative Case			Base Case	Alternative Case	Percent Tree Cover
Tree Cover (%)	36.8	20.0		Tree Leaf Area Index	5	5	How much of your watershed area is covered
Shrub Cover (%)	14.2	14.2	5	Shrub Leaf Area Index	2.2	2.2	by tree canopy? Here you
Herbaceous Cover (%)	14.2	14.2	5	Herbaceous Leaf Area	1.6	1.6	would enter this percentage This percentage represents
Water Cover (%)	0.2	0.2	1.40	Index			tree canopy found over both
Impervious Cover (%)	33.6	50.4		Directly Connected Impervious Cover (%)	20.9	40.0	pervious and impervious cover. For example, trees
Soil Cover (%)	1.0	1.0		Impervious cover (70)			planted in a parking lot,
Total Cover (%) (Should = 100)	100.0	100.0					where the majority of the canopy might be over impervious asphalt, and
Cover Types beneath	Tree Cove Base Case	Alternative Case	1				trees planted in parks, where the canopy is over pervious soil/grass, are both included in this percentage.
Soil Cover (%)	86.4	70.0					This percentage could come
Impervious Cover (%)	13.6	30.0					from data sources you have already compiled or you
Total Cover (%) (Should = 100)	100.0	100.0					could make use of other i- Tree tools, such as i-Tree Canopy (www.itreetools.org/canopy , to create a statistical
(577040 100)			J				, to create a statistical
				Next: Step 4)	Run the i-Tr	ee Model!	Reset OK Cance
i-Tree is a Cooperative Initiative -	DAVE	v ≇ @Arb	or Day	Foundation SMA	ISA	Æ	ESF

Outputs: In the User Interface

ISA

Exported Outputs & Examples of Additional Processing

Site condition	Total flow (m ³)	Base flow (m ³)	Pervious flow (m ³)	Impervious flow (m³)
Current	12,322	5,063	4,700	2,559
Post- development	37,277	6,488	14,327	16,462
Increased Gallons	6.6 million	376 K	2.5 million	3.7 million
Percent Increase	303%	28%	305%	643%

i-Tree

i-Tree

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

Project Area					reen Cove	er	0.045	10.1	Help for iter
Area 26237500	Units	m² 🔻			een Canopy		0.042	(%)	Pervious C
				Evergre	een Shrub Car	nopy	0.21	(%)	Canopy
Land Cover Area									This perta
	Rac	e Case	Alternate (ase 1	Alternate C	ase 2	Alternate C	250 3	UNDERNEA
		O Area	(%)		(%)	000 L	(%)	0000	portions o
Tree Canopy (TC)	39.20	10285100.(34.20		44.20		41.7þ		
Pervious under TC	38.49	10098813.	33,49		38.49		38.49		Because n
Impervious under TC	1.80	472275.00	1.80		6.80		4.30		completely canopy, it
Shrub Canopy	33.50	8789562.5(33.50		33.50		33.50		other cove
Herbaceous	15.00	3935625.0(15.00		15.00		15.00	-	Hydro can
Water	2.00	524750.00	2.00		2.00		2.00	-	area of ini
Impervious	10.30	2702462.5(15.30		5.30		7.80		Pervious (
Bare Soil	0.0	0.0	0.0		0.0		0.0		Canopy pe
									the amou
Green Infrastructu	re								beneath tr
Tree Pit	0.0	0.0	0.0		0.0	4	0.0		pervious s
Rain <mark>Garde</mark> n	0.0	0.0	0.0		0.0		0.0		Total cove
Green Roof	0.0	0.0	0.0		0.0	4	0.0		sub-types
Rain Barrel	0.0	0.0	0.0		0.0	-	0.0		100%. In
Porous Pavement	0.0	0.0	0.0		0.0		0.0		describing as best as
									or under e
Total Cover	100.0	26237500.(100.0		100.0		100.0		
Directly Connected	Impervi	ous Area							
Directly Connected IA	4.21	133656.44	12.07	-	2.77	4	4.21		
Canopy Parameters	5								
Tree Leaf Area	5.0		5.0		5.0		5.0	-	
Shrub Leaf Area	2.0		2.0	-	2.0	-	2.0	-	
Herbaceous Leaf Area	2.0		2.0		2.0	-	2.0	-	
	2.0		2.0		2.0		2.0		
			Nex	t: Step 3,) Parameterize	e and Ca	librate Model		Cancel

🚹 Rain Garden - 0 % Area (m²) (%) ee **GI Footprint** 0 0 Land Cover Tree Cover 0 0 Shrub Cover 0 0 Herbaceous Cover 0 0 Soil Cover 0 0 **Total Cover** 0 0 **Canopy Properties** Tree LAI 5 Shrub LAI 2 Herbaceous LAI 2 Soil Properties Max Ponding Depth (m) 0 Root Zone Depth 0 Storage Zone Depth 0 Soil Porosity 0 Infiltration Rate 0 Soil Type Ŧ **Hydraulic Properties** Contributing Area (m²) 0 Impervious (%) 0 Pervious (%) 0 Underdrain False . OK Cancel

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

€PA

1 Step 3) Parameterize & Calibrate Model

These parameters define project area soil and vegetation properties and model conditions. Starting with the Suggested Default Values, these parameters can be adjusted in one of two ways: (1) manually based on prior knowledge, testing or research and (2) through calibration to observed streamflow values.

Note: Calibration of a parameter set is available only when modeling a watershed with observed streamflow values. Calibration of a parameter set adjusts the hydrological parameters to reduce the differences between the predicted streamflow and observed streamflow values across the time step set within the calibration window on the right.

	Calibration	
Current parameter set: Suggested Default Values	Time Step Hourly	•
Save Save As Delete	Calibrate	Parameter Sets
Parameters:	Advanced Settings]
Ve start with a preliminary value for the amount of water oming through the gauge.	Leaf Transition Period (days)	28
	Leaf On Day (Day of year 1-365)	127
Annual Average Flow at Gauging Station (cms) 33680555556	Leaf Off Day (Day of year 1-365)	280
	Tree Bark Area Index	1.7
hen we select a soil type to account for the way water moves to and through the ground.	Shrub Bark Area Index	0.5
	Leaf Storage (mm)	0.2
Soil Type Sandy Clay Loam 🔻	Pervious Depression Storage (mm)	1.0
Wetting Front Suction (m) 0.12	Impervious Depression Storage (mm)	2.5
Wetted Moisture Content (m) 0.48	Scale Parameter of Power Function	2
Surface Hydraulic Conductivity (cm/h) 0.2700	Scale Parameter of Soil Transmissivity	0.023
	Transmissivity at Saturation (m²/h)	0.13
ondition of the soil in terms of root penetration	Unsaturated Zone Time Delay (h)	10
nd water content is set next.	Time Constant for Surface Flow: Alpha (h)	1.0
Depth of Root Zone (m) 0.05	Time Constant for Surface Flow: Beta (h)	2.0
Initial Soil Saturation Condition (%) 50	Watershed area where rainfall rate can exceed infiltration rate (%)	100

Help for items on this page:

Soil Type

properties are important for correctly modeling infiltration and runoff generation processes. In general terms, pick the best soil type that describes most of your watershed area. Values range from extremely porous sand through relatively impervious clay, with many soil types found in between.

units: none

Based on the soil type, Hydro will supply values for:

Wetting Front Suction

Wetting front suction (m), controls the maximum infiltration rates. It is used to describe the rate at which water is pulled into the soil when it is dry during the early part of the infiltration process. Estimated from soil physical properties used in Green-Ampt lookup tables.

Next: Step 4) i-Tree Hydro Run Model

Next

Cancel

OK

23

1			4) Ru	n Model	- • ×
	Scenario 1 Scenario 2	BaseCase Alternate Case 1	~	Parameter Set 1 Parameter Set 2	Autocalibrate default value v
	OutPut Unit	Metric	~		Cancel Run

ISA

2	Desigr	n Rain	_ 🗆 ×
Location Input State : Location : • Address	Visconsin	Show Location on Map	
Duration and Frequency	Input		
Input/Output Units :	Units SI (cm) BG (in) 		
Duration :	24-hr 🗸	Rainfall Distribution Type :	~
Recurrence Interval :	100-yr 🗸	View US Rainfall Distribution Type	
Get Rain Data		Rain Depth (cm/in) : [15.215	

IDF Table (in inches)

Duration	One yr rec	Two yr rec	Five yr rec	Ten yr rec	Twenty Five yr rec	Fifty yr rec	Hundre
12hr	1.965	2.218	2.699	3.162	3.894	4.534	5.238
24-hr	2.253	2.547	3.101	3.632	4.467	5.193	5.990
2-day	2.536	2.903	3.577	4.207	5.180	6.012	6.917
3-day	2.786	3.170	3.879	4.542	5.566	6.443	7.396
4-day	3.011	3.407	4.138	4.822	5.879	6.784	7.769
7-day	3.582	4.034	4.854	5.608	6.758	7.732	8.782
10-day	4.091	4.598	5.501	6.319	7.547	8.575	9.673
20-day	5.577	6.232	7.356	8.339	9.767	10.927	12.138
30-day	6.845	7.634	8.955	10.081	11.673	12.936	14.228
45-day	8.480	9.458	11.053	12.373	14.183	15.574	16.961
60-day	9.895	11.050	12.898	14.393	16.397	17.898	19.361

< |

Save Close

Thoughts & Questions

www.itreetools.org

Videos Documentation **Online tools** Support Examples **Downloads Newsletters** info@itreetools.org

Thank you!

Robbie Coville robert.coville@davey.com

Dr. Ted Endreny te@esf.edu

ISA

In-depth technical slides to address questions

i-Tree is a Cooperative Initiative among these partners

- Topographic index
 - Affected by DEM resolution

Increasing DEM resolution – small cell sizes

- TI values decrease for most cells
 - Minimum, median values decrease
- TI values may increase for river/stream network cells
 - Maximum value may increase
- Decreasing DEM resolution larger cell sizes
 - Has the opposite effect

i-Tree is a Cooperative Initiative among these partners

Arbor Day Foundation

State University of New York

Hydraulic Conductivity – Transmissivity

- Same everywhere in the watershed
- Decay profiles decays with soil depth
 - Exponential vs. Power

$K_{s}(z) = K_{o} \exp(-fz) \qquad K_{s}(z) = K_{o}(1-fz)^{n}$ • Default model setting is power law decay

Changed in hydrological parameters screen

Saturation/infiltration excess

- Effects pervious areas
 - Tree cover over pervious, shrub/herbaceous, bare soil
- Percentage of watershed area that is controlled by infiltration excess – rest is saturation excess

Land cover

- Average or sampled typically only an estimation
- DCIA value estimated
- Problems with NLCD resolution

Calibration

- Method:
 - Determining optimal model parameter set
 - Optimization algorithm PEST
 - Repeated model runs
 - Comparing predicted and observed values
 - Maximize goodness of fit metrics
- Problems:
 - Equifinality Different parameter sets, same optimum
 - Disagreement between field data and model parameters

Calibration Metrics

- ➤ Values range from -∞ to 1
 - Negative Worse than observed average value
 - Zero Equal to observed average value
 - Positive Better than observed average value
- Volumetric Efficiency
 - Criss and Winston, 2008
- Baseflow fit
 - Perrin et al., 2001
- Peak flow fit
 - Nash Sutcliffe Efficiency (1970)
- Overall fit
 - Ye et al., 1997

🕈 Validation

- Using optimized parameter set to predict forward
 - Without further alteration/optimization
- Necessary to build confidence in the model
 - Trust structure and calibrated parameter set

Verification

- Alter model structure or routines
 - Switch model routines different governing equations
 - Revise model code numerical solutions, code structure

Common calibration problems

Weather station isn't representative, gage errors

Common calibration problems

High base flow, too little evapotranspiration

among these partners

Common calibration problems

Incorrect partitioning of baseflow/overland flows

