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A B S T R A C T

Urban trees provide numerous benefits to society, but upon removal, this resource is underutilized and often
considered a waste product to be discarded. However, urban trees have a potential to be utilized for various
products, create jobs and an income stream for cities. The latest data on urban forests in the United States were
used to estimate the potential annual value that could be derived from urban tree waste. Assuming a mortality
rate of 2%, annual urban woody biomass loss in the U.S. equates to about 46 million tonnes of fresh-weight
merchantable wood or 7.2 billion board feet of lumber or 16 million cords of firewood. The potential annual
value from urban wood waste ranges between $89-786 million depending upon the product derived (e.g., wood
chips to lumber). States with the greatest urban wood product potential are Florida ($6.6–57.6 million/year) and
Georgia ($6.0–52.7 million/year). Along with woody biomass, annual leaf loss has a potential to produce value.
The value of nutrients in annual leaf litter is estimated at $551 million per year. In addition to direct revenue
from sales, other environmental benefits can be derived through tree waste utilization that reduces landfill
waste, use of fertilizers and fossil fuel use in energy production. There are various reasons why this potential
maximum value from urban tree waste is not and likely cannot be attained, but its current use and value can be
increased. Creating markets and systems to utilize urban tree removals and leaves can help enhance income for
urban forest management as well as create social and environmental goods.

1. Introduction

While healthy urban forests provide numerous benefits to society
(e.g., Nowak and Dwyer, 2007; Nowak and Greenfield, 2018), debris
from tree removals and leaf litter can create a significant disposal cost.
However, these dead parts of a forest have the potential to be utilized to
help reduce management costs and/or create income. Given the mag-
nitude of the urban forest resource, the utilization of urban forest waste
could produce significant value to society and enhance urban forest
sustainability.

The total urban leaf area (one-sided) in the United States is estimated
at 51.5 million hectares, with a dry-weight leaf biomass of 40.2 million
tonnes (Nowak and Greenfield, 2018). These leaves provide numerous
ecosystem services and values to humans, but also produce leaf litter that
contains various nutrients that are essential for vegetation growth. In
addition, the U.S. urban forest contain 834 million tonnes of carbon or
1.67 billion tonnes of dry-weight total tree biomass (Nowak and
Greenfield, 2018). After death or removal, this urban wood can be used
to produce products, rather than being a waste disposal cost.

Nationally, tree removals in urban areas account for approximately
14.0–34.5 million green tonnes per year (McKeever and Skog, 2003;
Bratkovich et al., 2010). Dry weight biomass from dead and dying
urban trees has also been estimated at 22.2 million tonnes per year
(MacFarlane, 2009). In the past, much of the urban waste wood was
dumped in landfills or burned. However, regulations and fees have
made this approach impractical (Lough, 2012). Other popular uses of
urban waste wood have included firewood and chips for mulch (Plumb
et al., 1999). In a survey of urban landscape waste residue in the U.S.
(Whittier et al., 1995), 67% of residue went to chips and 15% to un-
chipped logs. The most common residue disposal method was “give
away” (42%), followed by landfill (17%).

In a study of municipalities in Georgia, North Carolina and Virginia,
curbside pickup generated the highest percentage of urban wood waste
for the public sector (32–44%), followed by tree pruning (23–31%) and
tree removal (22–32%), while tree pruning (44–52%) and tree removal
(34–43%) generated the greatest wood waste for the private sector (Stai
et al., 2017). Logs were generally converted to firewood or lumber,
while brush and chips were generally used for mulch and compost.
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Recently, there has been an increased awareness that desirable/useful
products and services can be generated from urban waste wood. There
is a growing movement to utilize urban wood as part of a commitment
to sustainable urban forestry (e.g., Bratkovich et al., 2014; Michigan
Urban Wood Network, 2019; Urban Wood Network, 2019; U.S. Forest
Service, 2019d).

Creating products from urban tree waste can potentially help offset
the cost of tree removal and maintenance, and provide for more sec-
ondary products that can be utilized to generate economic and en-
vironmental benefits to society. Urban waste wood can be used to pro-
duce commercial lumber, which can be further processed into secondary
products (i.e. furniture, cabinetry, flooring, millwork, etc.). In addition,
there are niche markets for irregular urban trees that may be special due
to history, place of origin, personal value, or artistic value (e.g. unusual
grain, figure, width, thickness, splits/crotches, etc.) (Sherrill, 2003;
Sherrill and Bratkovich, 2018). Urban waste wood could also be used for
biofuel (e.g. ethanol, butanol, pellets, etc.) and biochar production (e.g.,
Henkel et al., 2016; Muley et al., 2016). These markets, if available, can
potentially create revenue that will offset some of the disposal costs and
help bolster local small businesses (Cesa et al., 1994; Plumb et al., 1999).
Incentives for urban wood utilization include reducing transportation
costs and disposal fees, increasing environmental sustainability and
production of additional revenue (Stai et al., 2017).

Waste wood utilization can also affect atmospheric carbon.
Utilization of wood as an energy source can reduce use of and emissions
from fossil-fuel based sources (e.g., Nowak et al., 2002b). In addition,
upcycling of wood to more durable products (e.g., lumber, furniture)
can lock carbon in the products for long periods, preventing the con-
version of stored carbon back to atmospheric carbon via wood de-
composition. Waste wood utilization is also viewed by many as an
environmentally friendly approach to waste management because the
waste wood is recycled and carbon is sequestered longer in the end-
products (Solid Waste Association of North America, 2002).

Several limitations have prevented the utilization of urban wood in
the past. These barriers include: lack of local processors and nearby
markets, lack of space for stockpiling wood and/or equipment for
processing wood, inconsistent wood supply, logistical difficulties in
transporting wood, imbedded metal contaminants, and lack of planning
(Bratkovich et al., 2008; Cesa et al., 1994; Stai et al., 2017). However,
education, research, and improved technology and policies can lead to
greater utilization of urban wood, which can provide many benefits to
society (Bratkovich et al., 2008).

Utilizing tree and wood products can help recoup some of the costs
associated with tree maintenance, both reducing costs and increasing
benefits (e.g., jobs, products, reduced waste disposal). Various assess-
ment of urban grass (e.g., Springer, 2012) and waste wood have been
conducted in cities (e.g., Timilsina et al., 2014) and in states (e.g.,
MacFarlane, 2009; Joshi et al., 2015; Stai et al., 2017). However, na-
tional assessments of urban waste wood magnitude (MacFarlane, 2009;
Bratkovich et al., 2010) and potential value are limited due to in-
adequate urban forest structural information. The objectives of this
paper are to assess the annual potential values of urban tree waste by
U.S. state based on more thorough and recent data on urban forest
structure (Nowak and Greenfield, 2018) and to discuss the potential
environmental and economic savings that can be realized through the
utilization of urban tree waste. While various studies have focused on
the total urban waste wood from cities (e.g., trees, buildings, etc.) (e.g.,
MacFarlane, 2009) or buildings (e.g., USDA Forest Service., 2019a), this
paper only focuses on the urban tree resource.

2. Methods

Total urban tree leaf dry-weight biomass and carbon storage by U.S.
states were derived from Nowak and Greenfield (2018). The definition of
urban is primarily based on population density using the U.S. Census
Bureau’s (2017) definition: all territory, population, and housing units

located within urbanized areas or urban clusters. To estimate leaf dry-
weight biomass and carbon storage, state urban tree cover data from c.
2014 (Nowak and Greenfield, 2018) were combined with average
structural attributes per acre of urban tree cover derived from field data
collected in 28 U.S. cities and urban areas within 6 States from across the
U.S. (Nowak et al., 2013a). These data were based on random samples of
field plots in each city or state and analyzed using the i-Tree Eco model
(www.itreetools.org; Nowak et al., 2008). The leaf biomass and carbon
were estimated using measured tree data, allometric equations and leaf
area to biomass conversion factors (Nowak, 1996; Nowak et al., 2008).
The biomass and carbon estimates were converted to potential leaf nu-
trients and wood products, and associated values as follows.

2.1. Leaf biomass to nutrient value conversions

To determine annual leaf litter produced, percent deciduous leaf area
in urban areas needs to be estimated. This information is not known for
urban areas at the state level, except for Indiana, Kansas, Nebraska,
North and South Dakota, Tennessee and Wisconsin (Nowak et al., 2007,
2012a, 2012b, 2017). To estimate percent deciduous for the other states,
percent tree cover classified as deciduous was determined for each
county based on evergreen, deciduous and mixed forest land covers as
classified by the National Land Cover Database (NLCD) for 2011 (U.S.
Geologic Survey, 2016). The proportion of mixed forest cover that was
deciduous was estimated as the proportion of deciduous to evergreen
plus deciduous forest cover in each county. Using field data from 38
cities (Table 1), percent deciduous leaf area was compared with NLCD
derived estimates from the county within which each city resides. This
comparison revealed that the NLCD county estimates of deciduous cover
tend to underestimate the percent deciduous cover in the cities by an
average 12.4% (i.e., cities tend to have more deciduous cover than the
county average). For states without percent deciduous urban tree cover
estimates, the NLCD derived estimate of percent deciduous tree cover
was adjusted upward by 12.4% for states with less than 85% deciduous
tree cover. The 85% cutoff was established to prevent excessively high
percent deciduous values due to the correction factor.

Total state leaf dry-weight was multiplied by estimated percent
deciduous cover to estimate annual leaf litter produced in urban areas
by state. To estimate nutrients within the annual deciduous leaf litter
produced, the average nutrient composition of dry-weight leaves
(Table 2) was applied to the leaf biomass estimate.

To estimate the value of the nutrients (nitrogen (N), phosphorus (P),
potassium (K)) within the leaf litter, N,P,K fertilizer costs were used as a
proxy. The proxy values are based on market price methods, which use
the prices of goods and services that are bought and sold in commercial
markets to determine the value of an ecosystem service (Carson and
Bergstrom, 2003). For N, anhydrous ammonia is the most prevalent and
lowest cost form of nitrogen (360 Yield Center, 2019). With 82% ni-
trogen and an average cost of $564/tonne (t) in August 2018
(Schnitkey, 2018), the nitrogen value converts to $688/tN. For P, a
diammonium phosphate fertilizer cost of $538/t was used (Schnitkey,
2018). With 46% P (Noble Research Institute, 2019), this cost converts
to $1,169/tP. For K, the cost of potash fertilizer of $390/t was used
(Schnitkey, 2018). With 60% K (Noble Research Institute, 2008), this
cost converts to $650/tK. These values were applied to the N,P,K
amounts within annual leaf litter to estimate the potential value of the
nutrients within the leaves.

2.2. Tree carbon to wood product value conversions

Total urban tree carbon storage was converted to total tree dry-
weight biomass by multiplying by two (e.g., Chow and Rolfe, 1989).
Total tree biomass was converted to above-ground biomass based on a
root-shoot ratio of 0.26 (Cairns et al., 1997). Dry weight was converted
to fresh-weight using an average moisture content of 48% for conifers
and 56% for hardwoods (Nowak et al., 2002a) and a U.S. average of
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70% hardwoods in urban areas (based on U.S. results of percent de-
ciduous urban tree cover from above).

To estimate the annual wood product potential from urban tree
above-ground biomass, a mortality rate for urban trees is needed.
Average urban tree loss in Baltimore was estimated at 6.6% between
1999 and 2001 (Nowak et al., 2004) and 3.6% within residential areas
(Nowak and Aevermann, 2019). In Syracuse, NY (Nowak et al., 2016) the
residential tree annual mortality rate (1999–2009) was 3.8%. If the high
density and multi-family residential lands are excluded, residential tree
mortality drops to 2.2% in Baltimore and 3.3% in Syracuse (Nowak and
Aevermann, 2019). From these limited studies, annual mortality ranges
between 2 and 7%, with a likely average around 4%. As annual mortality

rates for entire urban forest populations are limited, this paper assumes a
conservative average annual mortality of 2%, which is consistent with
past urban biomass estimates (MacFarlane, 2009). As annual mortality
rates vary by diameter class (Nowak, 1994), the average mortality rate
was distributed among diameter classes such that the total mortality rate
would be 2% based on the average U.S. urban forest diameter class
distribution (Nowak and Aevermann, 2019; Table 3).

Because biomass increases with tree size, proportion of total tree
population decreases with size, and varying mortality rates with tree
size (Table 3), a 2% mortality rate does not mean that 2% of above-
ground biomass will be removed. To determine an average percent
biomass lost annually, the annual mortality by diameter class was
weighted by the average proportion of biomass in the class. The pro-
portion of total biomass in each diameter class was estimated by con-
verting each 2.54 cm class to biomass using a sugar maple biomass
equation (Wenger, 1984) and weighting this biomass by the proportion
of total population in the diameter class based on the average U.S.
diameter distribution (Nowak and Aevermann, 2019). Total biomass in
the diameter class was divided by total biomass among all classes to
determine the proportion of biomass in each class. Using this proce-
dure, the annual biomass lost with a 2% mortality rate is 2.5%. This
biomass mortality rate was then used to estimate annual above-ground
dry and fresh-weight biomass removed in urban areas by state.

The fresh-weight above-ground biomass was converted to mer-
chantable and non-merchantable biomass, which was consequently
converted to four potential wood products: 1) lumber, 2) firewood, 3)
pallets, and 4) wood chips. These products are mutually exclusive in
that one unit of tree biomass can only go to one of the products. Thus
the totals of these products are not additive for the same unit of bio-
mass. Total tree biomass can be distributed among the products and
added (e.g., 50% of the biomass used for lumber and 50% for wood
chips). Also merchantable biomass and non-merchantable biomass
products can be added regardless of the product.

2.2.1. Merchantable vs. non-merchantable biomass
The proportion of tree above-ground biomass that is merchantable

(stem biomass from stump height 30 cm above ground to stem height
with a 10.1 cm stem diameter) was calculated using formulas from
Jenkins et al. (2004). Only trees with a minimum diameter at breast
height (dbh) of 12.7 cm were considered to have merchantable biomass
because of the 10.1 cm top definition. These formulas are based on tree
diameter for hardwood and softwood trees. To estimate the average
proportion of the urban forest that is merchantable, the percent mer-
chantable for each 2.54 cm diameter class at or above 12.7 cm for
hardwood and softwood was weighted based on a composition of 70%
hardwood (based on U.S. results of percent deciduous urban tree cover
from above), the average U.S. urban forest diameter distribution

Table 1
Percent deciduous leaf area from 38 U.S. cities where field
data derived estimates of leaf area where available based on
i-Tree Eco analyses of randomly sampled field plots (e.g.,
Nowak et al., 2013a).

City % Deciduous

Adrian, MI 90.7
Albuquerque, NM 83.6
Arlington, TX 92.3
Atlanta, GA 82.3
Austin, TX 42.8
Baltimore, MD 89.4
Boise, ID 74.1
Boston, MA 90.7
Casper, WY 72.5
Chester PA 94.8
Chicago, IL 96.1
Freehold, NJ 89.6
Gainesville, FL 52.4
Golden, CO 85.2
Grand Rapids, MI 90.2
Hartford, CT 90.1
Houston, TX 67.4
Jersey City, NJ 96.2
Kansas City, KS/MO 96.5
Las Cruces, NM 29.2
Lincoln, NE 79.9
Los Angeles, CA 47.8
Milwaukee, WI 92.9
Minneapolis, MN 89.4
Moorestown, NJ 88.4
Morgantown, WV 93.5
New York, NY 97.3
Omaha, NE 87.1
Philadelphia, PA 90.7
Phoenix, AZ 52.6
Roanoke, VA 87.4
Sacramento, CA 68.6
San Francisco, CA 15.1
Seattle, WA 61.2
Scranton, PA 85.1
Syracuse, NY 83.0
Washington, DC 95.8
Woodbridge, NJ 94.8

Table 2
Average percent nutrient composition of dry-
weight leaves derived from Daubenmire
(1953); Ovington (1956), and Pardo et al.
(2005).

Nutrient Percent

Carbon 58.32
Nitrogen 1.82
Calcium 0.98
Potassium 0.79
Magnesium 0.20
Phosphorus 0.17
Manganese 0.15

Table 3
Estimated proportion of total population and total biomass within tree diameter
classes, and average percent merchantable above-ground biomass and annual
mortality by diameter class (assuming a population average mortality of 2%)
for U.S. urban trees.

Diameter class
(cm)

Population%a Biomass%b %Merchantablec %Mortalityd

0–7.6 34.6 0.7 0.0 2.3
7.7–15.2 23.6 3.6 32.2 1.8
15.3–30.5 22.1 14.0 59.5 1.7
30.6–45.7 10.2 20.5 64.4 1.7
45.8–61.0 4.9 21.3 66.5 2.3
61.1–76.2 2.5 19.2 67.7 2.4
> 76.2 2.0 20.7 68.3 4.4

a proportion of total tree population within diameter class.
b proportion of total population biomass within diameter class.
c average percent of above-ground biomass that is merchantable.
d average percent annual mortality.
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(Nowak and Aevermann, 2019), and average percent biomass by dia-
meter class (Table 3). This weighting produced an average proportion
of 64% of above-ground urban tree biomass as merchantable.

2.2.2. Lumber estimates
Only trees with a minimum dbh of 22.9 cm (softwoods) and 27.9 cm

(hardwoods) were considered for potential logs (Domke et al., 2013).
Merchantable fresh-weight above-ground biomass for these trees was
converted to board feet (BF) based on a ratio of 176 BF per tonne
(Shelly, 2007). Two estimates of lumber value were made. Board feet
was converted to monetary value using a cost of $105 per thousand BF
(MBF) based on summer 2018 median cost for stumpage in New York
Adirondack and Hudson/Mohawk regions using the International ¼
inch rule (New York State Department of Environmental Conservation
(NY DEC), 2019). Tonnes of biomass were also converted to value based
on 2018 stumpage prices from the Southern U.S. (Timber Update,
2019). These stumpage prices were reported based on pine and hard-
wood for small (< 23 cm) and large trees. Using the same weighting
procedure as for merchantable biomass, the average stumpage value
per tonne was $17.72.

2.2.3. Firewood estimates
Board feet of merchantable biomass was converted to cords of

firewood using 500 BF / cord (New Hampshire Department of Revenue
Administration (NH DRA), 2019). A price per cord of wood of $20.66
was used based on 25% of the price range of $16.53–$33.06 / tonne for
firewood (Southern Maine Forestry Services, 2019). A minimum dbh for
firewood was 12.7 cm based on the merchantable top definition
(Jenkins et al., 2004).

2.2.4. Pallet estimates
Pallet price per MBF of $75 was used based on 25% of the price

range of $50-$150 / MBF for pallet grade logs (Southern Maine Forestry
Services, 2019). A minimum dbh for pallets was 12.7 cm based on the
merchantable top definition (Jenkins et al., 2004).

2.2.5. Wood chip estimates
A price for wood chips of $1.25 / fresh-weight tonne was used for

both merchantable and non-merchantable biomass based on 25% of the
price range of $0.55–$3.31 / tonne for biomass fuel chips (Southern
Maine Forestry Services, 2019).

3. Results

3.1. Urban tree leaf biomass, nutrient potential, and value

Total urban leaf biomass (dry-weight) in the United States is esti-
mated at 40.2 million tonnes with 28 million tonnes of leaf litter pro-
duced annually. The amount of nutrients contained in leaf litter each
year equates to about 16.4 million t of carbon, 511,000 t of nitrogen,
276,000 t of calcium, 221,000 t of potassium, 56,000 t of magnesium,
48,000 t of phosphorus and 41,000 t of manganese. The total nutrient
value N, P, K in the leaf litter is estimated at $551 million per year.
States with greatest annual leaf litter and value are Georgia ($35.5
million/yr), North Carolina ($34.9 million/yr), Pennsylvania ($34.7
million/yr), New York ($32.1 million/yr), and Ohio ($30.6 million/yr)
(Table 4).

3.2. Urban tree waste wood potential and value

Total above-ground dry-weight biomass in the U.S. urban forest is
estimated at 1.3 billion tonnes, with 33 million tonnes available an-
nually assuming a 2% mortality rate. This annual woody biomass loss
converts to a total of 46 million tonnes of fresh-weight merchantable
wood or 7.2 billion board feet of lumber or 16 million cords of wood.
This merchantable wood, if utilized, could produce between $57

million (based on wood chip values) to $753 million (based on board
foot value) in value annually. In addition, chipping the non-merchan-
table wood could produce another $32 million dollars annually. States
with the greatest urban wood product potential are Florida ($6.6–57.6
million/year), Georgia ($6.0–52.7 million/year), California ($5.5–48.7
million/year), North Carolina ($5.2–45.3 million/year) and Texas
($5.0–43.8 million/year) (Table 5).

4. Discussion

Nationally, tree removals in urban areas have been estimated at
14.0–34.5 million green tonnes per year (McKeever and Skog, 2003;
Bratkovich et al., 2010). Data for our recent assessment reveal that
current mortality and removals are on the order of 70 million green
tonnes of above-ground biomass per year (33 million t/year dry-
weight). The dry-weight removal estimate is comparable to a previous
national estimate of 22.2 million tonnes per year, which was also based
on a 2% mortality rate (MacFarlane, 2009). However, not all of this
biomass is removed, as some of the urban trees that die each year will
remain on site. The average annual waste wood yield per hectare of
urban land is 1.2 t/ha, which is higher than 0.8 t/ha from MacFarlane
(2009), but lower than estimates from 2.0 t/ha in Gainesville, Florida
(Timilsina et al., 2014).

The potential annual biomass loss will increase through time as
urban areas expand. Projections reveal that urban land in the con-
terminous United States is projected to increase from 3.6% (27.4 mil-
lion ha) in 2010 to 8.6% (66.0 million ha) in 2060. This projected urban
land increase over 50 years is 38.6 million ha, which is larger than the
state of Montana (Nowak and Greenfield, 2018). This urban expansion
could easily double the estimated product potential revealed from this
current analysis.

The maximum potential value from the utilization of urban waste
wood in the United States is $786 million per year based on lumber
potential. This value will vary by year as mortality rates vary (e.g.,
storms, development, pest variations). It will also likely never be at-
tained as not all of the trees that die within urban areas will be utilized
for lumber due to limited access, log requirements, tree form, limited
markets, tree decay, etc. The minimum national value if all above-
ground biomass is converted to wood chips is $89 million dollars per
year. This value is likely more attainable as trees often need to be
chipped to be transported from the removal site. By converting the
merchantable parts of trees to non-chip products (e.g., firewood, pal-
lets, saw and veneer logs), the potential value of this wood increases.

The potential maximum values of the wood products assume that
there is a local market available for these products, which may not be
the case. In addition, local costs associated with transporting, stock-
piling, sorting, and producing products will lead to a lower net value for
the products. Creating markets and cost-effective systems to utilize
urban tree wood can help enhance income for urban forest management
as well as create local jobs.

In addition, utilizing wood to produce more long-term products
(e.g., lumber, furniture) could reduce waste in landfills and will delay
the release of carbon back to the atmosphere (e.g., via burning or de-
composition) for longer periods. This longer term storage should reduce
near-term carbon emissions depending upon how much carbon is used
to produce the long-term products. This paper only assessed potential
wood values related to logs, pallets, firewood and wood chips, but
numerous other alternative wood products could developed.

4.1. Logs

Saw logs from urban trees offer the greatest potential for value
($753 million/year) as they can be used for manufactured wood pro-
ducts (e.g., furniture, cabinetry, millwork and flooring) and lumber
(Bratkovich et al., 2010). Sherrill (2003) estimated that approximately
3–4 billion board feet of potential urban lumber are thrown away
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annually. This analysis reveals that the annual maximum log potential
is around 7 billion board feet. However, given the issues of required log
dimensions and likely rot or inadequate forms (cull) in urban trees, this
maximum potential is likely unattainable. Thus, the 3–4 billion board
feet of potential urban lumber is likely a reasonable estimate. This value
is not insignificant considering that an estimated 37.3 billion board feet
of lumber (softwoods plus hardwoods) was produced in the United
States in 2013 (Howard and Jones, 2016).

Traditional and portable band sawmills can be used to create
lumber once an urban tree is harvested (Brashaw et al., 2012).

However, tree size can be a limitation as saw logs are considered to be
at least 2.4 m long (plus 15.2 to 20.3 cm trim) and have a small end
diameter inside bark of at least 15.2 cm for softwoods and 20.3 cm for
hardwoods (USDA Forest Service, 2004). Urban trees often have a more
open-grown form than trees within traditionally forested stands, which
creates a wider canopy and a relatively high number of large branches
from the main bole. This form can decrease the value of grade lumber
from urban trees. In addition, metal contamination and bark defects
(both of which can cause discoloration in the sapwood) can be a con-
cern.

Table 4
Dry-weight leaf biomass (LB) and nutrient composition and values of annual leaf litter from deciduous urban trees by U.S. state.

State Total LB Dec. LBa Nutrients in annual leaf litter (t x 103) Annual value ($ x 103)

(t x 103) SE % (t x 103) C N P K Ca Mg Mn N P K Total

Alabama 898.0 182.3 66.8 600.1 350.0 10.9 1.0 4.7 5.9 1.2 0.9 7,524 1,189 3,079 11,792
Arizona 546.8 111.0 15.1 82.5 48.1 1.5 0.1 0.7 0.8 0.2 0.1 1,034 163 423 1,620
Arkansas 486.7 98.8 82.6 401.9 234.4 7.3 0.7 3.2 4.0 0.8 0.6 5,039 797 2,062 7,897
California 2,488.4 505.2 18.3 455.8 265.8 8.3 0.8 3.6 4.5 0.9 0.7 5,714 903 2,338 8,955
Colorado 257.5 52.3 31.9 82.2 47.9 1.5 0.1 0.6 0.8 0.2 0.1 1,031 163 422 1,615
Connecticut 1,079.4 219.1 93.9 1,014.1 591.4 18.5 1.7 8.0 10.0 2.0 1.5 12,713 2,010 5,203 19,925
Delaware 137.0 27.8 92.3 126.5 73.8 2.3 0.2 1.0 1.2 0.3 0.2 1,586 251 649 2,485
Florida 2,947.5 598.4 14.0 411.9 240.2 7.5 0.7 3.2 4.0 0.8 0.6 5,163 816 2,113 8,093
Georgia 2,695.7 547.2 67.0 1,805.0 1,052.7 32.9 3.1 14.2 17.7 3.6 2.7 22,628 3,577 9,260 35,465
Idaho 62.8 12.8 18.4 11.6 6.7 0.2 0.0 0.1 0.1 0.0 0.0 145 23 59 227
Illinois 1,188.3 241.2 99.8 1,185.8 691.6 21.6 2.0 9.4 11.7 2.4 1.7 14,866 2,350 6,084 23,300
Indiana 760.4 154.4 94.3 717.0 418.2 13.1 1.2 5.7 7.0 1.4 1.1 8,989 1,421 3,679 14,089
Iowa 248.6 50.5 99.0 246.1 143.5 4.5 0.4 1.9 2.4 0.5 0.4 3,085 488 1,263 4,836
Kansas 324.5 65.9 91.2 296.0 172.6 5.4 0.5 2.3 2.9 0.6 0.4 3,710 587 1,518 5,815
Kentucky 482.8 98.0 94.8 457.5 266.8 8.3 0.8 3.6 4.5 0.9 0.7 5,735 907 2,347 8,989
Louisiana 843.3 171.2 44.1 371.8 216.8 6.8 0.6 2.9 3.7 0.7 0.5 4,661 737 1,907 7,305
Maine 201.4 40.9 54.7 110.2 64.3 2.0 0.2 0.9 1.1 0.2 0.2 1,381 218 565 2,165
Maryland 1,004.6 203.9 90.4 908.0 529.6 16.5 1.5 7.2 8.9 1.8 1.3 11,383 1,800 4,658 17,841
Massachusetts 1,625.9 330.1 81.5 1,325.4 773.0 24.1 2.2 10.5 13.0 2.6 2.0 16,616 2,627 6,800 26,043
Michigan 1,472.4 298.9 93.9 1,381.9 806.0 25.2 2.3 10.9 13.6 2.7 2.0 17,324 2,739 7,090 27,153
Minnesota 765.4 155.4 87.8 672.2 392.1 12.2 1.1 5.3 6.6 1.3 1.0 8,427 1,332 3,449 13,208
Mississippi 485.0 98.5 56.4 273.5 159.5 5.0 0.5 2.2 2.7 0.5 0.4 3,428 542 1,403 5,373
Missouri 771.0 156.5 97.2 749.7 437.3 13.7 1.3 5.9 7.4 1.5 1.1 9,399 1,486 3,846 14,731
Montana 61.1 12.4 14.5 8.9 5.2 0.2 0.0 0.1 0.1 0.0 0.0 111 18 46 175
Nebraska 102.8 20.9 84.0 86.4 50.4 1.6 0.1 0.7 0.8 0.2 0.1 1,083 171 443 1,697
Nevada 95.0 19.3 13.1 12.4 7.2 0.2 0.0 0.1 0.1 0.0 0.0 156 25 64 244
New Hampshire 347.6 70.6 68.6 238.3 139.0 4.3 0.4 1.9 2.3 0.5 0.4 2,987 472 1,223 4,682
New Jersey 1,295.0 262.9 94.8 1,227.2 715.7 22.4 2.1 9.7 12.1 2.4 1.8 15,384 2,432 6,296 24,112
New Mexico 133.5 27.1 14.0 18.7 10.9 0.3 0.0 0.1 0.2 0.0 0.0 235 37 96 368
New York 1,918.5 389.5 85.1 1,633.4 952.6 29.8 2.8 12.9 16.1 3.2 2.4 20,477 3,237 8,380 32,094
North Carolina 2,317.8 470.5 76.7 1,777.6 1,036.8 32.4 3.0 14.0 17.5 3.5 2.6 22,285 3,523 9,120 34,928
North Dakota 17.9 3.6 76.7 13.7 8.0 0.3 0.0 0.1 0.1 0.0 0.0 172 27 71 270
Ohio 1,594.4 323.7 97.8 1,559.1 909.3 28.4 2.6 12.3 15.3 3.1 2.3 19,546 3,090 7,999 30,635
Oklahoma 305.3 62.0 94.8 289.4 168.8 5.3 0.5 2.3 2.8 0.6 0.4 3,628 573 1,485 5,686
Oregon 327.0 66.4 15.6 51.0 29.8 0.9 0.1 0.4 0.5 0.1 0.1 640 101 262 1,003
Pennsylvania 1,844.1 374.4 95.8 1,766.7 1,030.4 32.2 3.0 13.9 17.4 3.5 2.6 22,148 3,501 9,064 34,713
Rhode Island 194.3 39.5 89.3 173.6 101.3 3.2 0.3 1.4 1.7 0.3 0.3 2,177 344 891 3,412
South Carolina 1,136.1 230.6 57.6 654.6 381.8 11.9 1.1 5.2 6.4 1.3 1.0 8,206 1,297 3,358 12,861
South Dakota 40.3 8.2 78.4 31.6 18.4 0.6 0.1 0.2 0.3 0.1 0.0 396 63 162 621
Tennessee 1,146.0 232.6 85.3 977.5 570.1 17.8 1.7 7.7 9.6 1.9 1.4 12,255 1,937 5,015 19,207
Texas 2,241.0 454.9 61.8 1,384.1 807.2 25.2 2.3 10.9 13.6 2.7 2.0 17,351 2,743 7,101 27,195
Utah 130.3 26.4 68.9 89.7 52.3 1.6 0.2 0.7 0.9 0.2 0.1 1,125 178 460 1,763
Vermont 73.7 15.0 88.4 65.1 38.0 1.2 0.1 0.5 0.6 0.1 0.1 816 129 334 1,280
Virginia 1,157.9 235.1 89.4 1,035.6 604.0 18.9 1.8 8.2 10.2 2.1 1.5 12,983 2,052 5,313 20,348
Washington 801.4 162.7 20.4 163.1 95.1 3.0 0.3 1.3 1.6 0.3 0.2 2,045 323 837 3,205
West Virginia 305.9 62.1 96.4 294.9 172.0 5.4 0.5 2.3 2.9 0.6 0.4 3,697 584 1,513 5,794
Wisconsin 500.3 101.6 81.6 408.2 238.1 7.4 0.7 3.2 4.0 0.8 0.6 5,118 809 2,094 8,021
Wyoming 22.3 4.5 17.7 3.9 2.3 0.1 0.0 0.0 0.0 0.0 0.0 49 8 20 77

US48b 39,916 8,100 69.8 27,868 16,254 507.7 47.2 219.9 273.9 55.3 41.1 349,369 55,232 142,975 547,577

Alaska 118.2 24.0 69.8 82.5 48.1 1.5 0.1 0.7 0.8 0.2 0.1 1,035 164 423 1,622
Hawaii 156.4 31.8 69.8 109.2 63.7 2.0 0.2 0.9 1.1 0.2 0.2 1,369 216 560 2,146

US50c 40,174 8,152 69.8 28,048 16,359 511.0 47.5 221.3 275.7 55.7 41.4 351,626 55,589 143,899 551,114

SE – standard error (t x 103).
a deciduous leaf biomass.
b conterminous 48 states.
c all 50 states.
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Table 5
Total above-ground dry-weight biomass (AGB) and potential biomass products and values from urban waste wood by U.S. state assuming a 2% mortality rate. All
values are in millions (x 106).

State AGB Standinga AGB Remb Merchantable AGB Merchantable Value ($)c N-M Value ($)d Total Value ($)

t SE t te BFf Cords Logsg Logsh Pallets Firewood Chips Chips Mini Maxj

Alabama 29.6 5.2 0.7 1.0 160.4 0.4 16.2 16.8 13.5 7.4 1.3 0.7 2.0 17.6
Arizona 18.0 3.2 0.5 0.6 97.7 0.2 9.8 10.3 8.2 4.5 0.8 0.4 1.2 10.7
Arkansas 16.0 2.8 0.4 0.6 86.9 0.2 8.8 9.1 7.3 4.0 0.7 0.4 1.1 9.5
California 82.0 14.5 2.1 2.8 444.5 1.0 44.8 46.7 37.4 20.6 3.5 2.0 5.5 48.7
Colorado 8.5 1.5 0.2 0.3 46.0 0.1 4.6 4.8 3.9 2.1 0.4 0.2 0.6 5.0
Connecticut 35.6 6.3 0.9 1.2 192.8 0.4 19.4 20.2 16.2 8.9 1.5 0.9 2.4 21.1
Delaware 4.5 0.8 0.1 0.2 24.5 0.1 2.5 2.6 2.1 1.1 0.2 0.1 0.3 2.7
Florida 97.1 17.1 2.4 3.4 526.5 1.2 53.0 55.3 44.3 24.4 4.2 2.4 6.6 57.6
Georgia 88.8 15.7 2.2 3.1 481.5 1.1 48.5 50.6 40.5 22.3 3.8 2.2 6.0 52.7
Idaho 2.1 0.4 0.1 0.1 11.2 0.0 1.1 1.2 0.9 0.5 0.1 0.1 0.1 1.2
Illinois 39.2 6.9 1.0 1.4 212.3 0.5 21.4 22.3 17.9 9.8 1.7 1.0 2.6 23.2
Indiana 25.1 4.4 0.6 0.9 135.8 0.3 13.7 14.3 11.4 6.3 1.1 0.6 1.7 14.9
Iowa 8.2 1.4 0.2 0.3 44.4 0.1 4.5 4.7 3.7 2.1 0.4 0.2 0.6 4.9
Kansas 10.7 1.9 0.3 0.4 58.0 0.1 5.8 6.1 4.9 2.7 0.5 0.3 0.7 6.3
Kentucky 15.9 2.8 0.4 0.5 86.2 0.2 8.7 9.1 7.3 4.0 0.7 0.4 1.1 9.4
Louisiana 27.8 4.9 0.7 1.0 150.6 0.3 15.2 15.8 12.7 7.0 1.2 0.7 1.9 16.5
Maine 6.6 1.2 0.2 0.2 36.0 0.1 3.6 3.8 3.0 1.7 0.3 0.2 0.4 3.9
Maryland 33.1 5.8 0.8 1.1 179.5 0.4 18.1 18.8 15.1 8.3 1.4 0.8 2.2 19.6
Massachusetts 53.6 9.4 1.3 1.9 290.4 0.7 29.2 30.5 24.4 13.5 2.3 1.3 3.6 31.8
Michigan 48.5 8.6 1.2 1.7 263.0 0.6 26.5 27.6 22.1 12.2 2.1 1.2 3.3 28.8
Minnesota 25.2 4.4 0.6 0.9 136.7 0.3 13.8 14.4 11.5 6.3 1.1 0.6 1.7 15.0
Mississippi 16.0 2.8 0.4 0.6 86.6 0.2 8.7 9.1 7.3 4.0 0.7 0.4 1.1 9.5
Missouri 25.4 4.5 0.6 0.9 137.7 0.3 13.9 14.5 11.6 6.4 1.1 0.6 1.7 15.1
Montana 2.0 0.4 0.1 0.1 10.9 0.0 1.1 1.1 0.9 0.5 0.1 0.0 0.1 1.2
Nebraska 3.4 0.6 0.1 0.1 18.4 0.0 1.8 1.9 1.5 0.9 0.1 0.1 0.2 2.0
Nevada 3.1 0.6 0.1 0.1 17.0 0.0 1.7 1.8 1.4 0.8 0.1 0.1 0.2 1.9
New Hampshire 11.5 2.0 0.3 0.4 62.1 0.1 6.3 6.5 5.2 2.9 0.5 0.3 0.8 6.8
New Jersey 42.7 7.5 1.1 1.5 231.3 0.5 23.3 24.3 19.5 10.7 1.8 1.0 2.9 25.3
New Mexico 4.4 0.8 0.1 0.2 23.8 0.1 2.4 2.5 2.0 1.1 0.2 0.1 0.3 2.6
New York 63.2 11.1 1.6 2.2 342.7 0.8 34.5 36.0 28.8 15.9 2.7 1.5 4.3 37.5
North Carolina 76.4 13.5 1.9 2.6 414.0 0.9 41.7 43.5 34.8 19.2 3.3 1.9 5.2 45.3
North Dakota 0.6 0.1 0.0 0.0 3.2 0.0 0.3 0.3 0.3 0.1 0.0 0.0 0.0 0.4
Ohio 52.5 9.3 1.3 1.8 284.8 0.6 28.7 29.9 24.0 13.2 2.3 1.3 3.5 31.2
Oklahoma 10.1 1.8 0.3 0.3 54.5 0.1 5.5 5.7 4.6 2.5 0.4 0.2 0.7 6.0
Oregon 10.8 1.9 0.3 0.4 58.4 0.1 5.9 6.1 4.9 2.7 0.5 0.3 0.7 6.4
Pennsylvania 60.8 10.7 1.5 2.1 329.4 0.7 33.2 34.6 27.7 15.3 2.6 1.5 4.1 36.1
Rhode Island 6.4 1.1 0.2 0.2 34.7 0.1 3.5 3.6 2.9 1.6 0.3 0.2 0.4 3.8
South Carolina 37.4 6.6 0.9 1.3 202.9 0.5 20.4 21.3 17.1 9.4 1.6 0.9 2.5 22.2
South Dakota 1.3 0.2 0.0 0.0 7.2 0.0 0.7 0.8 0.6 0.3 0.1 0.0 0.1 0.8
Tennessee 37.8 6.7 0.9 1.3 204.7 0.5 20.6 21.5 17.2 9.5 1.6 0.9 2.5 22.4
Texas 73.9 13.0 1.8 2.6 400.3 0.9 40.3 42.0 33.7 18.6 3.2 1.8 5.0 43.8
Utah 4.3 0.8 0.1 0.1 23.3 0.1 2.3 2.4 2.0 1.1 0.2 0.1 0.3 2.5
Vermont 2.4 0.4 0.1 0.1 13.2 0.0 1.3 1.4 1.1 0.6 0.1 0.1 0.2 1.4
Virginia 38.2 6.7 1.0 1.3 206.8 0.5 20.8 21.7 17.4 9.6 1.6 0.9 2.6 22.6
Washington 26.4 4.7 0.7 0.9 143.2 0.3 14.4 15.0 12.0 6.6 1.1 0.6 1.8 15.7
West Virginia 10.1 1.8 0.3 0.3 54.6 0.1 5.5 5.7 4.6 2.5 0.4 0.2 0.7 6.0
Wisconsin 16.5 2.9 0.4 0.6 89.4 0.2 9.0 9.4 7.5 4.1 0.7 0.4 1.1 9.8
Wyoming 0.7 0.1 0.0 0.0 4.0 0.0 0.4 0.4 0.3 0.2 0.0 0.0 0.0 0.4

US48k 1,315 231.9 32.9 45.5 7,130 16.0 717.9 748.7 600.1 330.6 56.8 32.0 88.8 780.7

Alaska 3.9 0.7 0.1 0.1 21.1 0.0 2.1 2.2 1.8 1.0 0.2 0.1 0.3 2.3
Hawaii 5.2 0.9 0.1 0.2 27.9 0.1 2.8 2.9 2.4 1.3 0.2 0.1 0.3 3.1

US50l 1,324 233.5 33.1 45.8 7,176 16.1 722.5 753.5 604.0 332.8 57.2 32.2 89.4 785.7

a standing above-ground dry-weight biomass prior to removal.
b removed above ground biomass assuming a 2% annual mortality (removal) rate.
c values are mutually exclusive.
d non-merchantable value (based on chip value).
e fresh-weight merchantable tonnes; minimum dbh of 12.7 cm.
f board feet based on minimum dbh of 22.9 cm (softwood) and 27.9 cm (hardwoods).
g log value based on average cost per tonne.
h log value based on average cost per board foot.
i minimum of total combined value of merchantable and non-merchantable wood; all wood converted to chips.
j maximum of total combined value of merchantable and non-merchantable wood; all merchantable wood converted to logs and non-merchantable converted to

chips.
k conterminous 48 states.
l all 50 states.
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Smaller urban logs can also be used for wood pulp, which is the
basic raw material used to make paper, insulation board, and hardboard
products (Widmann, 1991). Oftentimes, trees with multiple large
branches or other major defects are used for pulpwood because they are
not desirable for use as saw timber. Pulpwood trees usually generate
less revenue than sawtimber trees, depending on the local markets.

4.2. Pallets

Pallets from urban trees have a potential annual value of
$604 million. Generally, the raw material used to produce pallets con-
sists of lower grade hardwood and softwood logs. This includes the
interior portion of higher grade saw logs (heartwood), low-valued
species, and low-quality roundwood (Brashaw et al., 2012).

4.3. Firewood

Firewood production has long been a popular use for urban trees and
has the third highest potential value at $333 million per year. Though
not as valuable as other potential products (e.g. flooring, furniture, etc.),
it is a good market for large amounts of low-grade wood (Brashaw et al.,
2012). The production of firewood from urban trees can be small scale,
where only chainsaws and wood splitters are needed or large scale,
where turn-key, automated systems are used to cut and split the wood.
Firewood is generally cut and sold locally, thus a wide variety of species
are utilized. Dense hardwoods are preferred because of their superior
burning qualities (e.g. oak, maple, hickory, ash, elm, etc.).

Utilization of firewood for heating buildings can reduce carbon emis-
sions from fossil-fuel based energy sources. One cord of seasoned firewood
generates 15.3 million Btus (British thermal unit = 1055 joules), which is
equivalent to about 0.53 tonnes of coal, 500 liters of #2 fuel oil, or 815
liters of propane (USDA Forest Service, 2019b). Thus, the national urban
forest annual fuel potential is equivalent to 246 million MBtu (million
Btu), 8.6 million tonnes of coal, 8.1 billion liters of fuel oil or 13.2 billion
liters of propane. The urban waste wood Btu value is equivalent to about
¼% of total U.S. primary energy consumption in 2017 (97.7 billion MBtu;
U.S. Energy Information Administration, 2019).

4.4. Wood chips

Wood chips produce the lowest value of the analyzed potential
products at $89 million per year. Wood chips can be used for a variety
of purposes such as wood pulp, mulch and fuel. Chips for wood pulp
need to be uniform sized and de-barked (“clean chips”) (Peterson,
2019). Chips for mulch or fuel can be non-uniformed shaped and
barked. Mulch sold for flower beds and other aesthetic purposes need to
be a uniform size and shape, however, mulch that is being used as a
potting medium at a nursery can be non-uniform (Bratkovich et al.,
2010). Institutional and state/city/town departments use chips/mulch
in parks, schools, and vacant lots (Lough, 2012).

Biomass is being used increasingly around the U.S. and other
countries as a fuel source in combined heat and power (CHP) plants.
CHP is defined as “the simultaneous production of electrical or me-
chanical energy (power) and useful thermal energy from a single energy
source” (ASHRAE, 2008). Dried urban wood chips can be turned into a
gas and burned to generate heat. This heat is used to heat water, but
also routed via heat exchangers into an external combustion engine (or
gas turbine) where the heat is used to generate electricity. The elec-
tricity and thermal energy (i.e. hot water) produced are used to feed the
entire process and the excess energy is stored/sold and used to heat and
power other places (U.S. Environmental Protection Agency, 2007).

An example of a CHP use from urban wood comes from St. Paul,
Minnesota, where District Energy utilizes approximately 270,000 tonnes
of waste wood each year, primarily from urban tree removals. The plant
simultaneously produces 65 MW of thermal energy for District Energy
and 33 MW of electricity for Xcel Energy (Bratkovich et al., 2010). The

company estimates that “the collection, processing and transportation of
local wood residuals for the CHP plant contributes more than $10 million
annually to the local economy” (District Energy, 2013).

Various biofuel and other products can also be developed from CHP
plants by converting these plants into biorefineries. These products include
fuel pellets, pulp and paper, reconstitutes (e.g. fiberboard, etc.), and cel-
lulose nanocrystals, as well as acetic acid, formic acid, methanol, furfural,
butanol, acetone, ethanol, and lactic acid (Amidon et al., 2008). Based on
this biorefinery process, a tonne of urban waste wood (dry chips) could
produce about 700 kg of premium wood fiber for the production of fuel
pellets, pulp and paper, etc. It could also produce about 9 kg of furfural,
127 kg of sugars, 16 kg of acetic acid, 5 kg of methanol, 25 kg of lignin,
and 2 kg of formic acid (T. Amidon, pers. comm., 2013). This production is
in addition to the heat and power production. Biofuel production can help
reduce fossil-fuel use and associated greenhouse gas emissions.

Wood chips can also be used to create bio-char (e.g., Henkel et al.,
2016), which is a charcoal produced by burning organic matter under
low oxygen conditions. Biochar can be used a soil amendment to po-
tentially improve soil fertility and help mitigate climate change (e.g.,
Lehmann et al., 2011). By producing and utilizing biochar in soils, tree
carbon could be stored for long periods of time and urban tree pro-
ductivity and performance potentially increased. Significant potential
exists for the production of bioenergy/biofuel and biochar from wood
waste (cellulose, hemicellulos and lignin).

4.5. Specialty and other products

Specialty wood-working products can also be produced from urban
trees as these trees can contain natural variation in wood color, knots,
burls, insect damage (e.g. larvae galleries/holes) and mineral stains that
create unique wood characteristics that can increase its value. These
products include picture frames, bowls, small jewelry boxes, gunstocks,
lamp bases, clocks, coasters, cribbage boards, cutting boards, custom
table tops, and tool handles (Brashaw et al., 2012). Small business and
craft shop owners prefer these types of wood because of the special/
unique effects they give their finished products. Taylor Guitars, a
leading guitar manufacturer, is currently exploring utilizing urban
wood for guitars and believes that there is a sufficient quantity of music
quality tonewood within the urban wood waste stream to use as a fu-
ture component on a line of its mass produced guitars (S. Paul, pers.
comm., 2019). Urban trees also have the potential to produce numerous
other products such as shipping containers, landscape ties, railroad ties,
poles and piling, bolts and billets, mine timbers, and fence posts.

4.6. Leaf biomass utilization

In addition to potential products from waste wood, annual urban
leaf litter could be utilized to add nutrients to the soil. The potential
value from these leaves in terms of N, P, and K is $551 million per year.
The estimated leaf biomass of 28 million tonnes is less than the 40
million tonnes (Nowak and Greenfield, 2018) due to updated state level
estimates of percent deciduous cover.

How these urban leaves are distributed and disposed of in urban
areas will influence carbon and nutrient cycling, water quality and the
use of fertilizers to provide essential nutrients for urban forests. There
are various options related to disposing of leaf litter. Some options fa-
cilitate recycling of these nutrients, others dispose of the leaves.
Recycling options include using mowers to mulch and distribute the
leaves on site and mulching/composting the leaves either on- or off-site.
Mulch can be used around plants to suppress weeds, retain moisture,
insulate the soil, reduce erosion and provide nutrients to the soil.
Compost can be added to soils to enrich soil, help retain moisture,
suppress plant diseases and pests, and reduce the need for chemical
fertilizers (U.S. Environmental Protection Agency, 2019).

Leaves that are moved off-site are either composted or become part
of the waste stream. A previous study (U.S. Environmental Protection

D.J. Nowak, et al. Urban Forestry & Urban Greening 46 (2019) 126469

7



Agency, 2013) that investigated the amount of yard waste generated in
the United States found that as of 2011, 22 states—representing about
40% of the nation’s population—have legislation affecting disposal of
yard trimmings. In addition, some local and regional jurisdictions reg-
ulate disposal of yard trimmings. Of the 30.6 million tonnes of yard
trimmings in the United States, 57.3% or 17.5 million tonnes were re-
covered by off-site composting or wood waste mulching in 2011. Yard
waste contributed 13.5% of the total annual weight of municipal solid
waste in 2011 (U.S. Environmental Protection Agency, 2013). It is es-
timated that the average composition of yard trimmings by weight is
about 50% grass, 25% brush, and 25% leaves. Utilizing urban leaves
and leaf nutrients can help reduce landfill waste and also add thousands
of tonnes of essential nutrients back to the soil.

While leaves contain nutrients, they could also contain heavy metals
and other pollutants that may be retained on the leaf surface through
the interception of particulate pollution (Smith, 1990; Nowak et al.,
2013b). These pollutants could be concentrated in soils where nu-
merous leaves are aggregated to develop mulch/compost. In addition,
leaf molds, which can be beneficial to soils, could also create allergic
reactions in humans (Rackemann et al., 1938; Vinje, 2019)

4.7. Limitations

The estimates of biomass loss provided in this paper are based on the
best available data related to urban forest structure and mortality rates.
The cumulative uncertainty of these estimates and the associated mone-
tary values is unknown. The relative standard error of the estimate of
above-ground biomass is 18%, but uncertainty increases as conversions of
biomass to potential waste value are calculated. These conversions in-
clude above-ground dry-weight biomass to fresh-weight merchantable
biomass (low uncertainty), mortality rates (high uncertainty), conversion
of merchantable biomass to products (low to moderate uncertainty), and
valuing of products (low to moderate uncertainty). The largest potential
uncertainty arises from mortality rates, which are likely between 2 to 7%
annually. Changes in mortality rates can have substantial effects with 7%
mortality more than tripling the values. Monetary values will also fluc-
tuate through time as market values change.

These estimates can be improved with more comprehensive urban
forest structural data and long-term monitoring. Urban forest mon-
itoring (mortality) information will improve in the future based on the
U.S. Forest Service Forest Inventory and Analysis’ urban forest in-
ventory program. This program measures urban forest data annually to
assess urban forest structure, ecosystem services and values, and
changes in structure, services and values through time. Thirty five cities
were monitored in 2018 with new cities to be added to the monitoring
program annually (USDA Forest Service, 2019c).

The current estimates are likely conservative relative to total annual
percent mortality, thus the values given are likely conservative maximum
potential values. However, most of this potential is not being realized, so
the actual value that is utilized from urban tree waste is substantially
lower than the potential maximum. There are various reasons why this
potential maximum is not realized, including: a) not all trees that die are
removed as many trees remain on site and decompose (e.g., forest
stands), b) not all of the wood can be utilized for products due to defects,
c) log estimates are liberal as they are based on merchantable biomass to
a 10.1 cm top (saw logs typically go to a 15.2 cm (softwoods) and
20.3 cm (hardwood) top diameter) (USDA Forest Service, 2004) and d)
many areas do not have markets to sell these potential products. Other
limitations include: a) log length and quality of logs (e.g., defects, knots)
are not considered in the log calculation, b) valuation will vary through
time as market values fluctuate, and c) nutrient values maybe over-
estimated based on market prices as the nutrients from the leaves may
not be as effective in supplying nutrients as commercial fertilizers.

While several cities are creating revenue by utilizing urban waste
wood to produce mulch, chips, logs or fuel for CHP plants (e.g.,
Bratkovich, 2001; Bratkovich et al., 2010; Lough, 2012), much of this

potential resource value is lost through underutilization of these poten-
tial products. To aid in aligning urban waste wood with potential buyers
or markets, i-Tree and the USDA Forest Service Forest Product Lab have
developed i-Tree Wood Marketplace. This free tool (wood.itreetools.org/
market/map) is designed to connect people who remove urban trees with
potential buyers. The actual value utilized can increase if cities or regions
make the effort to produce products from waste wood and help establish
markets. These efforts could include policies, regulations, coordination
among supplies and markets, and funding to create a robust system for
utilizing urban tree waste. Improved forest recycling and use of waste
can reduce costs and help create more sustainable urban forests. In-
creasing the number of cities utilizing urban wood and leaf waste could
potentially equate to over a billion dollars in annual value nationally.

5. Conclusion

Urban tree wood waste could reasonably produce between $100 mil-
lion to $1 billion dollars in annual value nationally if utilized. The value
will vary by state and the type of product produced (e.g., saw logs vs.
wood chips). Though some cities utilize urban waste wood, the potential
nationally is largely untapped. Some of the value produced by utilizing
urban tree waste will be lost through the cost of production, but many of
these trees are already being removed (harvested) (e.g., Sherrill and
Bratkovich, 2018) and the potential products and revenue underutilized.
In addition to direct revenue from sales, other environmental benefits can
be derived through tree waste utilization that reduces use of fertilizers and
fossil fuels in energy production. Improved utilization of urban tree waste
can also lead to reduced wood waste in landfills, increased urban jobs, and
reduced need for harvesting rural forests. As urbanization expands, so will
the potential value of urban tree waste. Creating markets and systems to
utilize urban tree removals and leaves can help improve income for urban
forest management, as well as create social and environmental goods.
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