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Abstract 

Air pollution is a major environmental and human health concern in urban areas where 

urban forests can play an important role to remove air pollutants through dry deposition 

processes. Employing the US EPA’s country-wide hourly air quality data set, the USDA 

Forest Service’s i-Tree Eco assesses annual impacts of urban forests on air quality 

improvement. When applying i-Tree Eco, missing values in the air quality data degrades 

the assessments. The goal of this study is to develop a new single imputation method to fill 

gaps in the hourly air quality data set to enhance the applicability of i-Tree Eco across the 

conterminous United States. Considering weekly, daily and hourly time effects of air 

pollutant level, the developed method can estimate missing values with only on-site data. 

Compare to other standard single imputation methods, the performance of the developed 

method was the best for gaps greater than 4 hours, and as good as the other methods for 

smaller gaps.  

1 Introduction 

Air pollution is a major environmental and human health concern around the world, 

particularly in cities where pollutant sources are concentrated (Serageldin, 2002). Air 
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pollutant can partially be removed from the air by dry deposition processes in which urban 

forests play an important role. Due to the relatively large surface area of a tree canopy 

compared to grass or bare earth, ecological engineering designs use trees as biological 

filters to remove air pollutant and improve air quality (Beckett et al., 1998). Based on 

hourly air quality measurements, the United States Department of Agriculture (USDA) 

Forest Service’s i-Tree Eco (i-Tree, 2013) simulates hourly dry deposition rates of six 

criteria air pollutants (CAPs) to assess the annual impact of trees on environmental health 

risks in urban areas (Currie and Bass, 2008; Deutsch et al., 2005; Hirabayashi et al., 2011, 

2012; Nowak et al., 1998, 2006; Nowak and Crane, 2000). Hourly air quality data 

employed by i-Tree Eco are provided by the United States Environmental Protection 

Agency (US EPA) repository of ambient air quality data, Air Quality System (AQS). AQS 

monitoring sites are located across the entire conterminous United States, which enables 

country-wide applications of i-Tree Eco; however, missing data occur at most sites.  

 

Missing data is a very common problem in air quality studies. The major causes for missing 

air pollutant data includes monitor malfunctions and errors, power outages, computer 

system crashes, pollutant levels lower than detection limits, and filter changes (Imtiaz and 

Shah, 2008; Li et al., 1999). Missing data mechanisms can be generally classified into three 

types: missing completely at random (MCAR), missing at random (MAR), and not missing 

at random (NMAR) (Little and Rubin, 2002; Schafer, 1997). Consider the complete data 

X=xi and the missing data indicator M=mi, where mi =1 if xi is missing and mi =0 otherwise. 

The missing data mechanism can be characterized by the function 𝑓(𝑀|𝑋, 𝜑), where φ 

denotes unknown parameters. For MCAR, 𝑓(𝑀|𝑋, 𝜑) = 𝑓(𝑀|𝜑) for all X and φ. That is, 

missing of data does not depend on the value of X. For MAR, 𝑓(𝑀|𝑋, 𝜑) = 𝑓(𝑀|𝑋𝑜𝑏𝑠, 𝜑) 

for all Xmiss and φ, where Xobs and Xmiss represent observed and missing components of X, 

respectively. Missing of data depends only on the components of X that are observed, and 

not on the components that are missing. For NMAR,  (𝑀|𝑋, 𝜑) = 𝑓(𝑀|𝑋𝑚𝑖𝑠𝑠, 𝜑). Missing 

of data depends on Xmiss. In general, the mechanism of missing air quality data is MAR as 

the probability that a value is missing is not dependent on the missing values themselves 

(Junninen et al., 2004; Marwala, 2009).   

 

Missing data imputation essentially means dealing with missing data. The most commonly 

used approach to deal with missing data is called case deletion, in which those cases with 
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missing data are merely left out and analyses are performed on the remaining data 

(complete-case analysis). For instance, the statistical software package R automatically 

eliminates all cases in which any of the inputs are missing and runs analyses on the 

remaining data for classical regression and other models (Gelman and Hill, 2006).  

 

Another common approach to deal with missing data is to estimate missing values with a 

variety of techniques that range from extremely simple to rather complex. These techniques 

can be categorized based on the number of imputed values (single or multiple) used to 

replace each missing value and the absence or presence of covariates (univariate or 

multivariate) (Little and Rubin, 2002). With single imputation, precisely one value is filled 

in for each missing value, and thus imputation efforts need to be carried out only once. 

Multiple imputation methods generate multiple simulated values for each missing data 

value to retain the uncertainty of the missing data, and may be a more statistically sound 

approach (Schafer, 1997). In univariate imputation, missing values of a single variable are 

estimated as a function of other observed values of the same variable. These methods are 

generally simple and straightforward and thus easy to implement, though the performance 

of missing data estimation may be poor. In multivariate imputation, missing values are 

estimated with concurrent records of the same or other variables, and the performance may 

be improved over univariate imputation. However, when a number of concurrent variables 

are missing, it can be difficult to replicate data patterns (Junninen et al., 2004).  

Univariate single imputation schemes commonly employed include using the mean or 

median of measured values, carrying the last observation forward or the next observation 

backward, or the average of the last and next observations (Engels and Diehr, 2003; 

Gelman and Hill, 2006; Marwala, 2009). Multivariate single imputation schemes 

commonly used are using the mean or median of the concurrently measured values, hot-

deck, cold-deck, regression, regression with error (Engels and Diehr, 2003), neural 

networks, decision trees (Marwala, 2009), multivariate nearest neighbor (Junninen et al., 

2004), expectation maximization (EM) (Dempster et al., 1977), spatio-temporal filling 

(Kondrashov and Ghil, 2006), and Kalman filters (Moffat et al., 2007).  

 

In air quality studies, covariates such as meteorological data are often used. Junninen et al. 

(2004) employed air quality data as well as weather data that were concurrently measured 

at two sites to evaluate several imputation methods including univariate single imputation 
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(linear, spline and nearest neighbor), multivariate single imputation (regression-based 

imputation, nearest neighbor, self-organizing map, multi-layer perceptron), hybrids of the 

above mentioned univariate and multivariate single imputation methods, and multi 

imputation methods (computed as a the mean of multivariate methods and hybrid methods). 

In air quality studies, covariates may be same air quality variables at different sites. Plaia 

and Bondi (2006) employed air quality data at eight neighboring sites and tested several 

imputation methods including univariate single imputation (hourly mean, mean of last and 

next), multivariate single imputation (mean of concurrently measured values at neighboring 

sites, site-dependent effect method (SDEM)), and multivariate multiple imputation methods 

(model-based multiple imputation).  

 

In some large cities, the AQS monitoring site network is rather dense, and concurrent 

records are available at nearby stations to impute missing values. In more remote areas, on 

the other hand, monitoring sites are sparsely located and concurrent records are not 

available. In addition, for some monitoring sites, a dominant air pollutant emission source 

such as plants or other facilities may be specified. In such cases, nearby monitoring sites 

without a dominant source may have different air quality patterns. These conditions have 

led us to explore methods that only require on-site data to fill data gaps in AQS data (i.e. 

univariate single imputation method).  

 

In the current study, a single imputation method developed to impute missing values at 

AQS air pollutant monitors across the conterminous United States is described. In this new 

method, site-dependent weekly, daily, and hourly patterns of the air pollutant concentrations 

are used to fill in hourly missing values of carbon monoxide (CO), nitrous oxide (NO2), 

ozone (O3), and sulfur dioxide (SO2). The developed method is compared with other 

standard single imputation methods to evaluate the suitability of the method for AQS 

monitoring data.  

2 Air Quality System (AQS) Data 

The AQS national database contains ambient air quality data collected by US EPA, State, 

local, and tribal air pollution control agencies from thousands of monitoring sites (US EPA, 

2010a). While the database contains values from 1957 through present, in this study we 
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used AQS data from the 2010 calendar year to analyze missing data and develop a single 

imputation method of missing data for hourly measurements of CO, NO2, O3, and SO2 

across the conterminous United States. Table 1 presents the total number of AQS 

monitoring sites for these air pollutants in 2010. Among these sites, no monitor had a 

complete record of hourly observations for 2010. For each AQS monitoring site, an inter- or 

intra-state regional boundary called an Air Quality Control Region (AQCR) is assigned. 

The AQCRs were established by the US EPA based on jurisdictional boundaries, urban-

industrial concentrations, and other factors such as air sheds, to provide adequate 

implementation of the Clean Air Act (US EPA, 1972). 247 AQCRs cover all fifty states, the 

District of Columbia, Puerto Rico, and the Virgin Islands, of which 239 AQCRs cover the 

contiguous United States.    

 

AQS hourly pollutant concentrations vary spatially across the contiguous United States. 

Figure 1 provides box plots of the four pollutants for 2010 within selected AQCRs. For 

each plot, the AQCRs with the maximum and minimum medians for a specific pollutant are 

presented along with eight AQCRs with medians evenly spaced between the two. Larger 

medians were found in the AQCR containing major cities (i.e. 36: Metropolitan Denver, 67: 

Metropolitan Chicago, 94: Metropolitan Kansas City), while smaller medians were found in 

more remote areas (i.e. 88: Northeast Iowa, 206: South Dakota).  

 

Spatial variation in pollutant data was influenced by pollutant sources. As two major 

emission sources of CO and NO2 are transportation (motor vehicles) and industries 

(chemical plants, metal processing, electric utility, etc.), higher levels were found in urban 

and industrial areas. O3 is a secondary pollutant that is not usually emitted directly into the 

air, but at ground-level is formed through chemical reactions between nitrogen oxides 

(NOx) and volatile organic compounds (VOCs) in the presence of sunlight and heat 

(Sillman, 1999). Both NOx and VOCs are emitted by motor vehicle exhaust, industrial 

sources, gasoline vapors, chemical solvents, and natural sources. There was relatively little 

spatial variation for O3 because a secondary pollutant is less impacted by local sources (Ito 

el al., 2005; Sarnat et al., 2010). Wind may carry NOx and VOC hundreds of miles away 

from their original source (US EPA, 2010b), which may smooth O3 variation across space. 

Ambient SO2 is emitted largely from stationary sources such as coal and oil combustion, 

steel mills, refineries, and 
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Figure 1 Spatial distribution of air pollutant concentration across the conterminous 

United States 
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pulp and paper mills (US EPA, 2013). Maximum SO2 concentrations are generally 

observed within a few hundred kilometers of the major SO2 sources, such as the Ohio River 

Valley (Seinfeld, 1986). AQCRs with larger SO2 median can be found in 83 and 174, 

located within Ohio River Valley.  

 

Temporal variation in air pollutant concentrations is typically influenced by seasonal and 

diurnal factors including transportation volume, industrial activities, meteorological cycles, 

and interactions between these factors (Capilla, 2007). In addition, there often are distinct 

differences in air pollutant concentrations due to human activities on weekdays and 

weekends. For the four air pollutants, the monitoring site with the longest length of 

available observations in 2010 was selected from each of the 10 AQCRs presented in 

Figure 1 (hereafter, selected monitoring sites are referred to as monitoring sites 1 to 10 in 

the order of AQCRs in Figure 1 for each pollutant). Figure 2 presents week-of-year, day-of-

week, and hour-of-day means calculated for monitoring sites 1 to 10 of each pollutant. In 

most cases, all of the sites exhibit similar patterns for each pollutant, yet the patterns are 

different between pollutants.  CO levels are sensitive to cold season temperature inversions 

which trap the gas beneath a layer of warm air, leading to higher concentrations (US EPA, 

2010b). The seasonal influence of inversions is shown in Figure 2 where CO concentrations 

were higher during the autumn and winter weeks. Lower concentrations in the weekends 

and during off-peak commuting hours can be explained by reduced traffic. NO2 levels also 

peak in the winter during inversions that reduce mixing and entrainment (Atkins and Lee, 

1995; Hargreaves et al., 2000). Lower NO2 values in summer weeks, weekends, and mid-

day may be attributed to dry deposition on vegetative surfaces (Nowak et al., 2006). Due to 

transportation and industrial activities NO2 levels were higher during weekdays around the 

commuting hours and the peak of industrial activity in the afternoon. The photochemical 

production of O3 reaches peak values during warmer weeks and hours. Although SO2 shows 

no distinct seasonal or week-of-day pattern, the peak levels tend to occur near noon when 

the boundary layer is deep and SO2 aloft could be more effectively mixed down to the 

surface (Chen et al., 2001). 
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Figure 2 (a) week-of-year, (b) day-of-week and (c) hour-of-day means of pollutant concentration for monitoring sites 1 to 10 for 

the four pollutants



9 

 

Week-of-year, day-of-week and hour-of-day means were calculated for each monitoring 

sites. Throughout the year, 53 week-of-year, 7 day-of-week, and 24 hour-of-day means 

needed to be calculated. Note that the week 1 and 53 may include less than seven days as 

the week assignment starts on Sundays and ends on Saturdays. This assignment was 

employed because human activities may be more tightly tied to weeks starting from 

Sunday. If no data was available for an averaging period at a monitoring site, the criteria for 

the number of means were not satisfied and thus this site was excluded from the further 

analyses (Table 1). Missing data for O3 tend to present a distinct temporal pattern, since 

many monitoring sites discontinue their O3 monitoring during the cold season, and resume 

during the warm “ozone season” from spring to fall (CFR, 2010). As a result, for 2010 only 

31.5% of O3 monitoring sites have measurement records where all means can be calculated. 

While the AQS monitor sites are distributed nationally, density of coverage varies, and sites 

included in the further analyses are concentrated in major cities in the Midwest as well as 

coastal regions.  

For each of the sites included in the analyses, percentage of missing values as well as 

percentage of the 1-hour, 2-hour, 3- to 24-hour, and over 24-hour gap occurrences were 

calculated, and averaged for all monitors (Table 2). For each air pollutant, on average 2.6% 

- 4.7% of the total 8760-hour records was missing. In most cases, monitoring was 

interrupted for only a few hours, and over 97% of missing data were gaps less than 24 

successive hours. 

 

Table 1 Number of monitoring sites in the conterminous United States in 2010 (sites included are those for which week-of-ye

ar, day-of-week and hour-of-day means can be calculated, while sites excluded are those for which these means are unable to 

calculate due to a large number of missing values). 

Air pollutant Sites included Sites excluded Total 

CO 198 (59.5%) 135 (40.5%) 333 

NO2 220 (54.7%) 182 (45.3%) 402 

O3 391 (31.5%) 849 (68.5%) 1240 

SO2 268 (61.2%) 170 (38.8%) 438 
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3 Imputation Methods 

3.1 Modified Site-Dependent Effect Method (SDEMm) 

The new method proposed in the current study (which will be referred to as SDEMm) is a 

modification of Plaia and Bondi (2006)’s SDEM. SDEMm uses week-of-year, day-of-week 

and hour-of-day means at the target site.  Missing values at time, t specified with week-of-

year, w (=1,2,…, 53), day-of-week, d (=1,2,…,7), and hour-of-day, h (=0,1,…23), �̂�𝑡𝑤𝑑ℎ
 

are estimated as the week-of-year mean multiplied by the day-of-week effect and the hour-

of-day effect, and then adjusted with the last observation before the missing values and the 

next observation after the missing values: 

�̂�𝑡𝑤𝑑ℎ
= �̅�𝑤 ×

�̅�𝑑
1

7
∑ �̅�𝑑
7
𝑑=1

×
�̅�ℎ

1

24
∑ �̅�ℎ
23
ℎ=0

× 𝐹 (1) 

where �̅�𝑤 is week-of-year mean, �̅�𝑑 is day-of-week mean, �̅�ℎ is hour-of-day mean, and F 

is an adjustment factor: 

𝐹 =

𝑥𝑡𝑙𝑎𝑠𝑡
�̂�𝑡𝑙𝑎𝑠𝑡

+
𝑥𝑡𝑛𝑒𝑥𝑡
�̂�𝑡𝑛𝑒𝑥𝑡

2
 (2) 

where 𝑥𝑡𝑙𝑎𝑠𝑡  and 𝑥𝑡𝑛𝑒𝑥𝑡  are the last and next observations for missing values at time, twdh, 

respectively (𝑡𝑙𝑎𝑠𝑡 < 𝑡𝑤𝑑ℎ < 𝑡𝑛𝑒𝑥𝑡), and �̂�𝑡𝑙𝑎𝑠𝑡  and �̂�𝑡𝑛𝑒𝑥𝑡  are values estimated with 

Equation 1. Preliminary studies showed when the hourly variation of the observed data was 

deviated a large amount from �̅�ℎ, this method could produce extremely large or small 

�̂�𝑡𝑤𝑑ℎ
. To avoid this, �̂�𝑡𝑤𝑑ℎ

 is capped with minimum and maximum of observed values. 

3.2 Hour Mean (HM) 

This method assigns the mean of all known hourly observations at the same monitoring site 

at the same hour over the entire year to the missing value: 

�̂�𝑡𝑤𝑑ℎ
= �̅�h (3) 

3.3 Linear Interpolation (LIN) 

This method fits a straight line between the last and next observations of a gap and 



11 

 

estimates the missing values based on linear interpolation: 

�̂�𝑡𝑤𝑑ℎ
= 𝑥𝑡𝑙𝑎𝑠𝑡 + 𝑎(t𝑤𝑑ℎ − 𝑡𝑙𝑎𝑠𝑡)  (4) 

where 𝑎 =
𝑥𝑡𝑛𝑒𝑥𝑡−𝑥𝑡𝑙𝑎𝑠𝑡

𝑡𝑛𝑒𝑥𝑡−𝑡𝑙𝑎𝑠𝑡
, and 𝑡𝑙𝑎𝑠𝑡 < 𝑡𝑤𝑑ℎ < 𝑡𝑛𝑒𝑥𝑡 

3.4 Last & Next (LN) 

This method fills in missing values with the mean of the last and next observations of a 

gap: 

�̂�𝑡𝑤𝑑ℎ
=

𝑥𝑡𝑙𝑎𝑠𝑡+𝑥𝑡𝑛𝑒𝑥𝑡

2
 (5) 

where 𝑡𝑙𝑎𝑠𝑡 < 𝑡𝑤𝑑ℎ < 𝑡𝑛𝑒𝑥𝑡 

3.5 Nearest Neighbor (NN) 

In this method, the last or next observations of the gaps are used as the estimates for all the 

missing values, depending on the temporal proximity of the missing value to these know 

observations: 

�̂�𝑡𝑤𝑑ℎ
= 𝑥𝑡𝑙𝑎𝑠𝑡  if 𝑡𝑤𝑑ℎ ≤ 𝑡𝑙𝑎𝑠𝑡 +

𝑡𝑛𝑒𝑥𝑡−𝑡𝑙𝑎𝑠𝑡

2
 

�̂�𝑡𝑤𝑑ℎ
= 𝑥𝑡𝑛𝑒𝑥𝑡 if 𝑡𝑤𝑑ℎ > 𝑡𝑙𝑎𝑠𝑡 +

𝑡𝑛𝑒𝑥𝑡−𝑡𝑙𝑎𝑠𝑡

2
 (6) 

4 Evaluation of imputation methods 

4.1 Missing value simulations 

The imputation methods were applied to simulated missing values for monitoring sites 1 to 

10 for each of the four pollutants. For the 10 CO monitoring sites, on average 2.8% of 

records were missing, while for NO2, O3 and SO2 monitors, 3.1%, 2.6% and 3.9%, 

respectively, were missing. To simulate missing values in these monitor records, the 

missing values originally in the records were deleted (case deletion) to get the complete 
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case. As shown in Table 2, more than 97% of the gap occurrences were less than 24 

successive hours. To simulate these gap characteristics, three simulations were performed 

for each of the monitoring sites, in which 1-, 2- and 24-hour gaps were created from the 

beginning through the end of the records by sequentially moving the start hour of the gap 

by 1 hour throughout the record.  This way, our test can thoroughly simulate possible 

patterns of 1-, 2- and 24-hour of missing data. 

 

Table 2 Gap length statistics 

Air 

pollutant 
Gap (%)  

1-hour     

gap (%) 

2-hour     

gap (%) 

3- to 24-hour 

gap (%) 

Over 24-hour 

gap (%) 

CO 3.3 64.9 21.9 11.4 1.9 

NO2 4.7 41.1 33.8 22.6 2.5 

O3 2.6 63.2 22.4 12.6 1.9 

SO2 2.8 51.8 29.7 16.2 2.4 

4.2 Performance metrics 

For the simulations performed, the estimated missing values and their original values were 

compared to evaluate the performance of the imputation methods. Following the 

recommendations on model validation by Willmott (1981) and Legates and McCabe 

(1999), we considered two dimensionless measures (index of agreement (d2) and coefficient 

of efficiency (E2)) and one measure quantifying errors in terms of the units of the variable 

(mean absolute error (MAE)) along with the observed and estimated mean and standard 

deviations. In addition, we employed normalized mean bias (NMB) to assess average 

model bias percent relative to observed mean; that is, average over- or under-estimation. 

d2 was developed by Willmott (1981) as: 

𝑑2 = 1.0 −
∑(𝑥𝑡𝑤𝑑ℎ

−�̂�𝑡𝑤𝑑ℎ
)
2

∑(|�̂�𝑡𝑤𝑑ℎ
−�̅�𝑡𝑤𝑑ℎ

|+|𝑥𝑡𝑤𝑑ℎ
−�̅�𝑡𝑤𝑑ℎ

|)
2 (7) 

d2 ranges from 0.0 to 1.0, with higher values indicating better agreement.  

E2 can be calculated as:  
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𝐸2 = 1.0 −
∑(𝑥𝑡𝑤𝑑ℎ

−�̂�𝑡𝑤𝑑ℎ
)
2

∑(𝑥𝑡𝑤𝑑ℎ
−�̅�𝑡𝑤𝑑ℎ

)
2 (8) 

E2 ranges from negative infinity to 1.0 with the higher values indicating better agreement 

(Nash and Sutcliffe, 1970). Physically, E2 is the ratio of the mean square error (numerator) 

to the variance in the observed data (denominator), subtracted from 1.0. MAE can be 

calculated as: 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑥𝑡𝑤𝑑ℎ

− �̂�𝑡𝑤𝑑ℎ
| (9) 

where N is the number of tested values at a single site. NMB can be calculated as: 

𝑁𝑀𝐵 =
∑(�̂�𝑡𝑤𝑑ℎ

−𝑥𝑡𝑤𝑑ℎ
)

∑𝑥𝑡𝑤𝑑ℎ

× 100 =
�̅̂�𝑡𝑤𝑑ℎ

−�̅�𝑡𝑤𝑑ℎ

�̅�𝑡𝑤𝑑ℎ

× 100 (10) 

5 Results and Discussions 

5.1 Dimensionless Measures 

Figure 3 presents d2 obtained from 1-, 2- and 24-hour gap tests for each of the ten 

monitoring sites of the four pollutants. Overall, the imputation methods worked the best for 

O3, and the worst for SO2. The performances for NO2 and CO were between those for O3 

and SO2. The performance decreased as the gap length increased and in the following order: 

SDEMm, LIN, LN, NN and HM. The difference of d2 between the best four methods 

increased as the gap length increased. 

 

d2 of HM was the worst across the tests, and almost identical across gaps for each site since 

hour means used to fill gaps were almost identical for 1-, 2-, and 24-hour gap tests. For 1-

hour gaps, LIN and LN both estimated the missing value by taking average of the last and 

next observations, thus resulted in the exactly same performance. As shown in Figure 2, the 

concentration changes almost linearly between daily maxima and minima, and thus LIN 

and LN worked very well for short gaps (1- and 2-hour gaps). SDEMm performed as well 
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as  

 

Figure 3 Index of agreement (d2) for the 1-, 2- and 24-hour gap tests for monitoring 

sites 1 to 10 of the four pollutants 

these two methods for short gaps, while the NN exhibited a slightly worse performance. In 

the 24-hour gap tests, SDEMm outperformed other methods for CO, NO2 and O3, while for 

SO2, SDEMm was slightly worse than LIN (mean d2 across 10 sites was 0.59 for SDEMm, 

LN and NN, while 0.61for LIN), but the variation of d2 across the ten monitoring sites for 

SDEMm was the smallest (standard deviation was 0.14 for SDEMm, while > 0.15 for LIN, 

LN and NN). Compared to the other three pollutants, d2 across the 10 sites varied the most 

for SO2 in the 24-hour gap tests (standard deviations of SDEMm were 0.08, 0.04, and 0.05 

for CO, NO2, and O3 respectively). 
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The above results indicated that SDEMm generally worked the best, but performance 

varied across the monitoring sites. The model estimates missing values based on three time 

effects: week-of-year, day-of-week, and hour-of-day means. We investigated how the 

variations in these time-averaged values affected the variations in d2. No relationship 

between d2 and week-of-year and day-of-week means was identified, while the negative 

correlation between d2 and coefficient of variation (CV) of hour-of-day mean was observed 

for CO, O3 and SO2 (Table 3). This indicates that the smaller the variation in hour-of-day 

means at a monitoring site, the better SDEMm works for that site. Since the gap simulated 

was inserted in consecutive hours, the performance was influenced by hour-of-day effects.  

 

Table 3 Correlation coefficient between coefficient of variation (CV) of hour-of-day averages and d2 

Air pollutant 1-hour gap 2-hour gap 24-hour gap 

CO -0.44 -0.58a -0.66a 

NO2 -0.17 -0.36 -0.44 

O3 -0.70a -0.73a -0.66a 

SO2 -0.55a -0.64a -0.67a 

a Significantly different than zero at a 10% level. 

 

Coefficient of efficiency (E2) showed similar results as d2: the SDEMm, LIN and LN 

exhibited comparable E2 for 1- and 2-hour gaps, and NN had a slightly worse E2. 

Imputation for O3 worked the best (SDEMm's E2 for 1-hour gaps ranged from 0.93-0.98 

(mean 0.96), and for 2-hour gaps ranged from 0.88-0.95 (0.92)). For 24-hour gaps, 

SDEMm had a greater E2 than the other methods for CO, NO2 and O3 (Figure 4). It should 

be noted that E2 was negative for some monitoring sites tested with 24-hour gaps. Negative 

E2 indicates that the mean square error (numerator) exceeds the variance in the observed 

data (denominator), and thus the observation mean is a better predictor than the model 

(Wilcox et al., 1990; Legates and McCabe, 1999). This situation was observed for LIN, LN, 

and NN applied to some monitoring sites for the four air pollutants as well as the SDEMm 

applied to some SO2 monitors. 
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Figure 4 Coefficient of efficiency (E2) for 24-hour gap tests for monitoring sites 1 to 

10 of the four pollutants 

5.2 Error analyses 

MAE provides the magnitude of imputation errors in terms of the units of the variable. In 

the 24-hour gap test (worst case in the three gap length tests), SDEMm had the smallest 

MAE for CO, NO2 and O3, which were on average 0.132 ppm, 0.004 ppm and 0.0077 ppm 

(37%, 53% and 26% of the observation mean, i.e. the normalized MAE), respectively 

(Figure 5). For SO2, the MAE was similar for the five methods and was on average about 

0.015 ppm (70% of the observation mean).  

 

 

 

Figure 5 Mean absolute error for the 24-hour gap tests for monitoring sites 1 to 10 of 

the four pollutants 
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NMB indicates average over- or under-prediction of the model. Regardless of pollutants 

and gap hours, HM had nearly 0% NMB. This is due to the fact that this method imputed 

missing values with the mean of the observations at the target hour over the year. The mean 

of the estimates is thus almost identical to the observed mean throughout the year. For the 

entire year, the mean bias (estimated mean - observed mean) was almost 0, leading nearly 

0% NMB. The standard deviation of estimates was much smaller than observed for HM as 

it used a limited number of values to estimate missing values throughout the year.  

 

For a single imputation of a 24-hour gap, the mean of the concentrations estimated by the 

LIN was the mean of the last and next observations, LN used this mean value for all 

imputed values, while the NN used the last value to fill the first 12-hour gap and the next 

value to fill the second 12-hour gap. Therefore, when averaged, hourly concentrations 

estimated by LIN, LN and NN are identical. As a result, for the entire year comparison at 

each monitoring site, observed mean and estimated mean by these three methods were 

identical. This is true for 2-hour gaps as well. For 1-hour gaps, LIN and LN produced the 

same estimates, while NN used the last observation to fill the gap, which produced a slight 

difference in estimated mean between NN and LIN. Regardless, throughout the year, 

estimated mean by the three methods and observed mean were almost identical, leading to a 

NMB of nearly 0%. In addition, estimates from these three methods never exceeded the last 

and next observed values, and the standard deviations of these estimates were almost the 

same as the observed value.  

For SDEMm, the week-of-year, day-of-week and hour-of-day effects were all rounded by 

taking means, and thus large values tended to be under-estimated and small values tended 

to be over-estimated. Throughout the year, SDEMm generally over-estimated the observed 

concentration for the four pollutants. For the 24-hour gap tests, NMB for SDEMm was on 

average 1.7%, 6.1%, 0.7%, and 10.1% for CO, NO2, O3, and SO2, respectively.  

To further investigate the relationship of the gap length and the imputation methods, gap 

lengths of 4 to 48 hours (increasing by 2) were additionally tested using data at one O3 

monitoring site in AQCR186. Figure 6 presents the four performance measures against the 

gap length tested. Based on d2, E2 and MAE, the results of the LIN, LN, NN and SDEMm 

were equally good for gaps of 1 to 4 hours, but the performance of the LIN, LN and NN 

declined faster as the gap length increased. It can be observed that the performance kept 

degrading as the gap length increased up to 20 to 24 hours, and then began improving up to 
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30 to 32 hours for LIN and LN. This may be due to the autocorrelated diurnal variation of 

the pollution level with approximately a 24-hour lag. The SDEMm method had the best 

performance across all gap lengths tested. Over- or under-estimation of the models 

indicated by NMB were in a small range (-0.1 to 0.1 %). SDEMm generally over-estimated 

and the other four methods under-estimated the measurements. As the gap hours increased, 

the magnitude of over- or under-estimation increased. The improvement observed from 12 

to 20 hours for SDEMm may be again due to the autocorrelation of the pollution level. 

 

Figure 6 Performance of simple imputation methods as a function of gap length. The 

test was performed using single O3 monitor in AQCR186 

6 Conclusions 

This study developed a single imputation method to fill missing CO, NO2, O3, and SO2 

hourly values for the US EPA’s AQS data. The newly developed method, called SDEMm, 
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estimates missing values for sites with no covariates such as weather data or concurrent air 

quality data. SDEMm can estimate missing values with only on-site data for monitors 

where week-of-year, day-of-week and hour-of-day means can be calculated. Comparison 

with other standard single imputation methods (i.e. hour mean, linear, last & next and 

nearest neighbor) revealed that the performance of SDEMm was the best for gaps greater 

than 4 hours, and as good as any of the other methods for smaller gaps.  

 

Using SDEMm, we processed hourly concentrations of CO, NO2, O3 and SO2 for the 

conterminous United States from 2005 to 2010. These data are stored in the Davey Tree 

Expert Company’s i-Tree Eco server to provide United States users the ability to run i-Tree 

Eco in any cities, counties and states in the conterminous United States. Moreover, as the 

AQS data is often used by epidemiologic studies (Ito et al., 2005; Eder and Yu, 2006; Liao 

et al., 2006; Sarnat et al. 2010), the dataset completed by this study may also help improve 

these analyses.  

Results from this study indicate that additional experiments should be conducted in the 

future. Monitoring sites with a long interruption, especially O3 monitors that are active only 

during the “ozone season,” were excluded in this study. Due to the long gaps in these 

records, the SDEMm method was unable to calculate time mean concentrations for these 

monitors. Filling gaps with the time means at these monitoring sites will allow us to apply 

the developed method to those excluded monitors, which will provide improvements to i-

Tree Eco’s applicability. Other exclusions in this study are PM10 and PM2.5, which are 

typically measured on a daily or longer duration for most of the year as opposed to the 

hourly measurements required by i-Tree Eco.  
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